
Structural Analysis IV  Chapter 5 – Structural Dynamics 

Dr. C. Caprani 1 

 

 

Chapter 5 - Structural Dynamics 

 

5.1 Introduction ......................................................................................................... 3 

5.1.1 Outline of Structural Dynamics ..................................................................... 3 

5.1.2 An Initial Numerical Example ....................................................................... 5 

5.1.3 Case Study – Aberfeldy Footbridge, Scotland .............................................. 8 

5.1.4 Structural Damping ...................................................................................... 10 

5.2 Single Degree-of-Freedom Systems ................................................................. 11 

5.2.1 Fundamental Equation of Motion ................................................................ 11 

5.2.2 Free Vibration of Undamped Structures...................................................... 16 

5.2.3 Computer Implementation & Examples ...................................................... 20 

5.2.4 Free Vibration of Damped Structures .......................................................... 26 

5.2.5 Computer Implementation & Examples ...................................................... 30 

5.2.6 Estimating Damping in Structures ............................................................... 33 

5.2.7 Response of an SDOF System Subject to Harmonic Force ........................ 35 

5.2.8 Computer Implementation & Examples ...................................................... 42 

5.2.9 Numerical Integration – Newmark‟s Method ............................................. 47 

5.2.10 Computer Implementation & Examples ................................................... 53 

5.2.11 Problems ................................................................................................... 59 

5.3 Multi-Degree-of-Freedom Systems .................................................................. 63 

5.3.1 General Case (based on 2DOF) ................................................................... 63 

5.3.2 Free-Undamped Vibration of 2DOF Systems ............................................. 66 

5.3.3 Example of a 2DOF System ........................................................................ 68 

5.3.4 Case Study – Aberfeldy Footbridge, Scotland ............................................ 73 



Structural Analysis IV  Chapter 5 – Structural Dynamics 

Dr. C. Caprani 2 

5.4 Continuous Structures ...................................................................................... 76 

5.4.1 Exact Analysis for Beams ............................................................................ 76 

5.4.2 Approximate Analysis – Bolton‟s Method .................................................. 86 

5.4.3 Problems ...................................................................................................... 95 

5.5 Practical Design Considerations ...................................................................... 97 

5.5.1 Human Response to Dynamic Excitation .................................................... 97 

5.5.2 Crowd/Pedestrian Dynamic Loading .......................................................... 99 

5.5.3 Damping in Structures ............................................................................... 107 

5.5.4 Design Rules of Thumb ............................................................................. 109 

5.6 Appendix .......................................................................................................... 114 

5.6.1 Past Exam Questions ................................................................................. 114 

5.6.2 References .................................................................................................. 121 

5.6.3 Amplitude Solution to Equation of Motion ............................................... 123 

5.6.4 Solutions to Differential Equations ........................................................... 125 

5.6.5 Important Formulae ................................................................................... 134 

5.6.6 Glossary ..................................................................................................... 139 

 

Rev. 1 



Structural Analysis IV  Chapter 5 – Structural Dynamics 

Dr. C. Caprani 3 

5.1 Introduction 

5.1.1 Outline of Structural Dynamics 

Modern structures are increasingly slender and have reduced redundant strength due 

to improved analysis and design methods. Such structures are increasingly responsive 

to the manner in which loading is applied with respect to time and hence the dynamic 

behaviour of such structures must be allowed for in design; as well as the usual static 

considerations. In this context then, the word dynamic simply means “changes with 

time”; be it force, deflection or any other form of load effect. 

 

Examples of dynamics in structures are: 

 Soldiers breaking step as they cross a bridge to prevent harmonic excitation; 

 The Tacoma Narrows Bridge footage, failure caused by vortex shedding; 

 The London Millennium Footbridge: lateral synchronise excitation. 

 

 

(a) (after Craig 1981) 

 

(b) 

Figure 1.1 

 

 
m 
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The most basic dynamic system is the mass-spring system. An example is shown in 

Figure 1.1(a) along with the structural idealisation of it in Figure 1.1(b). This is 

known as a Single Degree-of-Freedom (SDOF) system as there is only one possible 

displacement: that of the mass in the vertical direction. SDOF systems are of great 

importance as they are relatively easily analysed mathematically, are easy to 

understand intuitively, and structures usually dealt with by Structural Engineers can 

be modelled approximately using an SDOF model (see Figure 1.2 for example). 

 

 

Figure 1.2 (after Craig 1981). 
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5.1.2 An Initial Numerical Example 

If we consider a spring-mass system as shown in Figure 1.3 with the properties m = 

10 kg and k = 100 N/m and if give the mass a deflection of 20 mm  and then release it 

(i.e. set it in motion) we would observe the system oscillating as shown in Figure 1.3. 

From this figure we can identify that the time between the masses recurrence at a 

particular location is called the period of motion or oscillation or just the period, and 

we denote it T; it is the time taken for a single oscillation. The number of oscillations 

per second is called the frequency, denoted f, and is measured in Hertz (cycles per 

second). Thus we can say: 

 

 
1

f
T

  (5.1.1) 

 

We will show (Section 2.b, equation (2.19)) for a spring-mass system that: 

 

 
1

2

k
f

m
  (5.1.2) 

 

In our system: 

 

1 100
0.503 Hz

2 10
f


   

 

And from equation (5.1.1): 

 

1 1
1.987 secs

0.503
T

f
    
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We can see from Figure 1.3 that this is indeed the period observed. 

 

 

Figure 1.3 

 

To reach the deflection of 20 mm just applied, we had to apply a force of 2 N, given 

that the spring stiffness is 100 N/m. As noted previously, the rate at which this load is 

applied will have an effect of the dynamics of the system. Would you expect the 

system to behave the same in the following cases? 

 If a 2 N weight was dropped onto the mass from a very small height? 

 If 2 N of sand was slowly added to a weightless bucket attached to the mass? 

 

Assuming a linear increase of load, to the full 2 N load, over periods of 1, 3, 5 and 10 

seconds, the deflections of the system are shown in Figure 1.4. 
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Figure 1.4 

 

Remembering that the period of vibration of the system is about 2 seconds, we can 

see that when the load is applied faster than the period of the system, large dynamic 

effects occur. Stated another way, when the frequency of loading (1, 0.3, 0.2 and 0.1 

Hz for our sample loading rates) is close to, or above the natural frequency of the 

system (0.5 Hz in our case), we can see that the dynamic effects are large. 

Conversely, when the frequency of loading is less than the natural frequency of the 

system little dynamic effects are noticed – most clearly seen via the 10 second ramp-

up of the load, that is, a 0.1 Hz load. 
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5.1.3 Case Study – Aberfeldy Footbridge, Scotland 

Aberfeldy footbridge is a glass fibre reinforced polymer (GFRP) cable-stayed bridge 

over the River Tay on Aberfeldy golf course in Aberfeldy, Scotland (Figure 1.5). Its 

main span is 63 m and its two side spans are 25 m, also, tests have shown that the 

natural frequency of this bridge is 1.52 Hz, giving a period of oscillation of 0.658 

seconds. 

 

 

Figure 1.5: Aberfeldy Footbridge 

 

 

Figure 1.6: Force-time curves for walking: (a) Normal pacing. (b) Fast pacing 
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Footbridges are generally quite light structures as the loading consists of pedestrians; 

this often results in dynamically lively structures. Pedestrian loading varies as a 

person walks; from about 0.65 to 1.3 times the weight of the person over a period of 

about 0.35 seconds, that is, a loading frequency of about 2.86 Hz (Figure 1.6). When 

we compare this to the natural frequency of Aberfeldy footbridge we can see that 

pedestrian loading has a higher frequency than the natural frequency of the bridge – 

thus, from our previous discussion we would expect significant dynamic effects to 

results from this. Figure 1.7 shows the response of the bridge (at the mid-span) when 

a pedestrian crosses the bridge: significant dynamics are apparent. 

 

 

Figure 1.7: Mid-span deflection (mm) as a function of distance travelled (m). 

 

Design codes generally require the natural frequency for footbridges and other 

pedestrian traversed structures to be greater than 5 Hz, that is, a period of 0.2 

seconds. The reasons for this are apparent after our discussion: a 0.35 seconds load 

application (or 2.8 Hz) is slower than the natural period of vibration of 0.2 seconds (5 

Hz) and hence there will not be much dynamic effect resulting; in other words the 

loading may be considered to be applied statically. 
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5.1.4 Structural Damping 

Look again at the frog in Figure 1.1, according to the results obtained so far which 

are graphed in Figures 1.3 and 1.4, the frog should oscillate indefinitely. If you have 

ever cantilevered a ruler off the edge of a desk and flicked it you would have seen it 

vibrate for a time but certainly not indefinitely; buildings do not vibrate indefinitely 

after an earthquake; Figure 1.7 shows the vibrations dying down quite soon after the 

pedestrian has left the main span of Aberfeldy bridge - clearly there is another action 

opposing or “damping” the vibration of structures. Figure 1.8 shows the undamped 

response of our model along with the damped response; it can be seen that the 

oscillations die out quite rapidly – this depends on the level of damping. 

 

 

 

Figure 1.8 

 

Damping occurs in structures due to energy loss mechanisms that exist in the system. 

Examples are friction losses at any connection to or in the system and internal energy 

losses of the materials due to thermo-elasticity, hysteresis and inter-granular bonds. 

The exact nature of damping is difficult to define; fortunately theoretical damping has 

been shown to match real structures quite well. 
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5.2 Single Degree-of-Freedom Systems 

5.2.1 Fundamental Equation of Motion 

  

(a) (b) 

Figure 2.1: (a) SDOF system. (b) Free-body diagram of forces 

 

Considering Figure 2.1, the forces resisting the applied loading are considered as: 

 a force proportional to displacement (the usual static stiffness); 

 a force proportional to velocity (the damping force); 

 a force proportional to acceleration (D‟Alambert‟s inertial force). 

We can write the following symbolic equation: 

 

 
applied stiffness damping inertia

F F F F    (5.2.1) 

 

Noting that: 

 

stiffness

damping

inertia

F

F

F

ku

cu

mu

 


 
 

 (5.2.2) 

 

that is, stiffness × displacement, damping coefficient × velocity and mass × 

acceleration respectively. Note also that u represents displacement from the 

equilibrium position and that the dots over u represent the first and second derivatives 

 m 

k 

u(t) 

c 
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with respect to time. Thus, noting that the displacement, velocity and acceleration are 

all functions of time, we have the Fundamental Equation of Motion: 

 

        mu t cu t ku t F t    (5.2.3) 

 

In the case of free vibration, there is no forcing function and so   0F t   which gives 

equation (5.2.3) as: 

 

       0mu t cu t ku t    (5.2.4) 

 

We note also that the system will have a state of initial conditions: 

 

  0
0u u  (5.2.5) 

  0
0u u  (5.2.6) 

 

In equation (5.2.4), dividing across by m gives: 

 

 ( ) ( ) ( ) 0
c k

u t u t u t
m m

    (5.2.7) 

 

We introduce the following notation: 

 

 
cr

c

c
   (5.2.8) 

 
2 k

m
   (5.2.9) 
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Or equally, 

 
k

m
   (5.2.10) 

 

In which 

   is called the undamped circular natural frequency and its units are radians per 

second (rad/s); 

   is the damping ratio which is the ratio of the damping coefficient, c, to the 

critical value of the damping coefficient 
cr

c . 

 

We will see what these terms physically mean. Also, we will later see (equation 

(5.2.18))  that: 

 

 2 2
cr

c m km   (5.2.11) 

 

Equations (5.2.8) and (5.2.11) show us that: 

 

 2
c

m
   (5.2.12) 

 

When equations (5.2.9) and (5.2.12) are introduced into equation (5.2.7), we get the 

prototype SDOF equation of motion: 

 

      22 0u t u t u t     (5.2.13) 

 

In considering free vibration only, the general solution to (5.2.13) is of a form 

 

 tu Ce  (5.2.14) 



Structural Analysis IV  Chapter 5 – Structural Dynamics 

Dr. C. Caprani 14 

 

When we substitute (5.2.14) and its derivates into (5.2.13) we get: 

 

  2 22 0tCe      (5.2.15) 

 

For this to be valid for all values of t, tCe  cannot be zero. Thus we get the 

characteristic equation: 

 

 2 22 0      (5.2.16) 

 

the solutions to this equation are the two roots: 

 

 

2 2 2

1,2

2

2 4 4

2

1

   


  

  


   

 (5.2.17) 

 

Therefore the solution depends on the magnitude of   relative to 1. We have: 

 1  : Sub-critical damping or under-damped; 

Oscillatory response only occurs when this is the case – as it is for almost all 

structures. 

 1  : Critical damping; 

No oscillatory response occurs. 

 1  : Super-critical damping or over-damped; 

No oscillatory response occurs. 

 

Therefore, when 1  , the coefficient of ( )u t  in equation (5.2.13) is, by definition, 

the critical damping coefficient. Thus, from equation (5.2.12): 
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 2 cr
c

m
   (5.2.18) 

 

From which we get equation (5.2.11). 
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5.2.2 Free Vibration of Undamped Structures 

We will examine the case when there is no damping on the SDOF system of Figure 

2.1 so 0   in equations (5.2.13), (5.2.16) and (5.2.17) which then become: 

 

    2 0u t u t   (5.2.19) 

 

respectively, where 1i   . From the Appendix we see that the general solution to 

this equation is: 

 

   cos sinu t A t B t    (5.2.20) 

 

where A and B are constants to be obtained from the initial conditions of the system, 

equations (5.2.5) and (5.2.6). Thus, at 0t  , from equation (5.2.20): 

 

       0
0 cos 0 sin 0u A B u      

 
0

A u  (5.2.21) 

 

From equation (5.2.20): 

 

   sin cosu t A t B t       (5.2.22) 

 

And so: 

 

 
      0

0

0 sin 0 cos 0u A B u

B u

   



   


  

 0
u

B


  (5.2.23) 
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Thus equation (5.2.20), after the introduction of equations (5.2.21) and (5.2.23), 

becomes: 

 

   0

0
cos sin

u
u t u t t 



 
   

 
 (5.2.24) 

 

where 
0

u  and 
0

u  are the initial displacement and velocity of the system respectively. 

Noting that cosine and sine are functions that repeat with period 2 , we see that 

 1 1
2t T t      (Figure 2.3) and so the undamped natural period of the SDOF 

system is: 

 

 
2

T



  (5.2.25) 

 

The natural frequency of the system is got from (1.1), (5.2.25) and (5.2.9): 

 

 
1 1

2 2

k
f

T m



 
    (5.2.26) 

 

and so we have proved (1.2). The importance of this equation is that it shows the 

natural frequency of structures to be proportional to k
m

. This knowledge can aid a 

designer in addressing problems with resonance in structures: by changing the 

stiffness or mass of the structure, problems with dynamic behaviour can be 

addressed. 
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Figure 2.2: SDOF free vibration response for (a) 
0

20mmu  , 
0

0u  , (b) 
0

0u  , 

0
50mm/su  , and (c) 

0
20mmu  , 

0
50mm/su  . 

 

Figure 2.2 shows the free-vibration response of a spring-mass system for various 

initial states of the system. It can be seen from (b) and (c) that when 
0

0u   the 

amplitude of displacement is not that of the initial displacement; this is obviously an 

important characteristic to calculate. The cosine addition rule may also be used to 

show that equation (5.2.20) can be written in the form: 

 

  ( ) cosu t C t    (5.2.27) 

 

where 2 2C A B   and tan B
A

  . Using A  and B  as calculated earlier for the 

initial conditions, we then have: 

 

  ( ) cosu t t     (5.2.28) 
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where   is the amplitude of displacement and   is the phase angle, both given by: 

 

 

2

2 0

0

u
u



 
   

 
 (5.2.29) 

 0

0

tan
u

u



  (5.2.30) 

 

The phase angle determines the amount by which ( )u t  lags behind the function 

cos t . Figure 2.3 shows the general case. 

 

 

Figure 2.3 Undamped free-vibration response. 
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5.2.3 Computer Implementation & Examples 

Using MS Excel 

To illustrate an application we give the spreadsheet used to generate Figure 1.3. This 

can be downloaded from the course website. 

 

 

http://www.colincaprani.com/structural-engineering/courses/structural-analysis-iv/
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The input parameters (shown in red) are: 

 m – the mass; 

 k – the stiffness; 

 delta_t – the time step used in the response plot; 

 u_0 – the initial displacement, 
0

u ; 

 v_0 – the initial velocity, 
0

u . 

 

The properties of the system are then found: 

 w, using equation (5.2.10); 

 f, using equation (5.2.26); 

 T, using equation (5.2.26); 

  , using equation (5.2.29); 

  , using equation (5.2.30). 

 

A column vector of times is dragged down, adding delta_t to each previous time 

value, and equation (5.2.24) (“Direct Eqn”), and equation (5.2.28) (“Cosine Eqn”) is 

used to calculate the response,  u t ,  at each time value. Then the column of u-values 

is plotted against the column of t-values to get the plot. 
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Using Matlab 

Although MS Excel is very helpful since it provides direct access to the numbers in 

each equation, as more concepts are introduced, we will need to use loops and create 

regularly-used functions. Matlab is ideally suited to these tasks, and so we will begin 

to use it also on the simple problems as a means to its introduction. 

 

A script to directly generate Figure 1.3, and calculate the system properties is given 

below: 

 

% Script to plot the undamped response of a single degree of freedom system 
% and to calculate its properties 

  
k = 100;        % N/m   - stiffness 
m = 10;         % kg    - mass 
delta_t = 0.1;  % s     - time step 
u0 = 0.025;     % m     - initial displacement 
v0 = 0;         % m/s   - initial velocity 

  
w = sqrt(k/m);              % rad/s - circular natural frequency 
f = w/(2*pi);               % Hz    - natural frequency 
T = 1/f;                    % s     - natural period 
ro = sqrt(u0^2+(v0/w)^2);   % m     - amplitude of vibration 
theta = atan(v0/(u0*w));    % rad   - phase angle 

  
t = 0:delta_t:4; 
u = ro*cos(w*t-theta); 
plot(t,u); 
xlabel('Time (s)'); 
ylabel('Displacement (m)'); 

 

The results of this script are the system properties are displayed in the workspace 

window, and the plot is generated, as shown below: 
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Whilst this is quite useful, this script is limited to calculating the particular system of 

Figure 1.3. Instead, if we create a function that we can pass particular system 

properties to, then we can create this plot for any system we need to. The following 

function does this.  

 

Note that we do not calculate f or T since they are not needed to plot the response. 

Also note that we have commented the code very well, so it is easier to follow and 

understand when we come back to it at a later date. 
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function [t u] = sdof_undamped(m,k,u0,v0,duration,plotflag) 
% This function returns the displacement of an undamped SDOF system with 
% parameters: 
% m - mass, kg 
% k - stiffness, N/m 
% u0 - initial displacement, m 
% v0 - initial velocity, m/s 
% duration - length of time of required response 
% plotflag - 1 or 0: whether or not to plot the response 
% This function returns: 
% t - the time vector at which the response was found 
% u - the displacement vector of response 

  
Npts = 1000;    % compute the response at 1000 points 
delta_t = duration/(Npts-1); 

  
w = sqrt(k/m);              % rad/s - circular natural frequency 
ro = sqrt(u0^2+(v0/w)^2);   % m - amplitude of vibration 
theta = atan(v0/(u0*w));    % rad - phase angle 

  
t = 0:delta_t:duration; 
u = ro*cos(w*t-theta); 

  
if(plotflag == 1) 
    plot(t,u); 
    xlabel('Time (s)'); 
    ylabel('Displacement (m)'); 
end 

 

To execute this function and replicate Figure 1.3, we call the following: 

 

[t u] = sdof_undamped(10,100,0.025,0,4,1); 

 

And get the same plot as before. Now though, we can really benefit from the 

function. Let‟s see the effect of an initial velocity on the response, try +0.1 m/s: 

 

[t u] = sdof_undamped(10,100,0.025,0.1,4,1); 

 

Note the argument to the function in bold – this is the +0.1 m/s initial velocity. And 

from this call we get the following plot: 
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From which we can see that the maximum response is now about 40 mm, rather than 

the original 25. 

 

Download the function from the course website and try some other values. 
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5.2.4 Free Vibration of Damped Structures 

 

 

Figure 2.4: Response with critical or super-critical damping 

 

When taking account of damping, we noted previously that there are 3, cases but only 

when 1   does an oscillatory response ensue. We will not examine the critical or 

super-critical cases. Examples are shown in Figure 2.4. 

 

To begin, when 1   (5.2.17) becomes: 

 

 
1,2 d

i      (5.2.31) 

 

where 
d

   is the damped circular natural frequency given by: 

 

 
21

d
     (5.2.32) 

 

which has a corresponding damped period and frequency of: 
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2

d

d

T



  (5.2.33) 

 
2

d

d
f




  (5.2.34) 

 

The general solution to equation (5.2.14), using Euler‟s formula again, becomes: 

 

  ( ) cos sint

d d
u t e A t B t     (5.2.35) 

 

and again using the initial conditions we get: 

 

 0 0

0
( ) cos sint d

d d

d

u u
u t e u t t 

 



  

   
  

 (5.2.36) 

 

Using the cosine addition rule again we also have: 

 

  ( ) cost

d
u t e t     (5.2.37) 

 

In which 

 

 

2

2 0 0

0

d

u u
u






 
   

 
 (5.2.38) 

 0 0

0

tan
d

u u

u







  (5.2.39) 

 

Equations (5.2.35) to (5.2.39) correspond to those of the undamped case looked at 

previously when 0  . 
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Figure 2.5: SDOF free vibration response for: 

(a) 0  ; (b) 0.05  ; (c) 0.1  ; and (d) 0.5  . 

 

Figure 2.5 shows the dynamic response of the SDOF model shown. It may be clearly 

seen that damping has a large effect on the dynamic response of the system – even for 

small values of  . We will discuss damping in structures later but damping ratios for 

structures are usually in the range 0.5 to 5%. Thus, the damped and undamped 

properties of the systems are very similar for these structures. 

 

Figure 2.6 shows the general case of an under-critically damped system. 
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Figure 2.6: General case of an under-critically damped system. 
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5.2.5 Computer Implementation & Examples 

Using MS Excel 

We can just modify our previous spreadsheet to take account of the revised equations 

for the amplitude (equation (5.2.38)), phase angle (equation (5.2.39)) and response 

(equation (5.2.37)), as well as the damped properties, to get:  
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Using Matlab 

Now can just alter our previous function and take account of the revised equations for 

the amplitude (equation (5.2.38)), phase angle (equation (5.2.39)) and response 

(equation (5.2.37)) to get the following function. This function will (of course) also 

work for undamped systems where 0  . 

 

function [t u] = sdof_damped(m,k,xi,u0,v0,duration,plotflag) 
% This function returns the displacement of a damped SDOF system with 
% parameters: 
% m - mass, kg 
% k - stiffness, N/m 
% xi - damping ratio 
% u0 - initial displacement, m 
% v0 - initial velocity, m/s 
% duration - length of time of required response 
% plotflag - 1 or 0: whether or not to plot the response 
% This function returns: 
% t - the time vector at which the response was found 
% u - the displacement vector of response 

  
Npts = 1000;    % compute the response at 1000 points 
delta_t = duration/(Npts-1); 

  
w = sqrt(k/m);              % rad/s - circular natural frequency 
wd = w*sqrt(1-xi^2);        % rad/s - damped circular frequency 
ro = sqrt(u0^2+((v0+xi*w*u0)/wd)^2);    % m - amplitude of vibration 
theta = atan((v0+u0*xi*w)/(u0*w));      % rad - phase angle 

  
t = 0:delta_t:duration; 
u = ro*exp(-xi*w.*t).*cos(w*t-theta); 

  
if(plotflag == 1) 
    plot(t,u); 
    xlabel('Time (s)'); 
    ylabel('Displacement (m)'); 
end 

 

Let‟s apply this to our simple example again, for 0.1  : 

 

[t u] = sdof_damped(10,100,0.1,0.025,0,4,1); 

 

To get: 
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To plot Figure 2.5, we just call out function several times (without plotting it each 

time), save the response results and then plot all together: 

 

xi = [0,0.05,0.1,0.5]; 
for i = 1:length(xi) 
    [t u(i,:)] = sdof_damped(10,100,xi(i),0.025,0,4,0); 
end 
plot(t,u); 
xlabel('Time (s)'); 
ylabel('Displacement (m)'); 
legend('Damping: 0%','Damping: 5%','Damping: 10%','Damping: 50%'); 
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5.2.6 Estimating Damping in Structures 

Examining Figure 2.6, we see that two successive peaks, 
n

u  and 
n m

u


, m  cycles apart, 

occur at times nT  and  n m T  respectively. Using equation (5.2.37) we can get the 

ratio of these two peaks as: 

 

 
2

expn

n m d

u m

u






 
  

 
 (5.2.40) 

 

where  exp xx e . Taking the natural log of both sides we get the logarithmic 

decrement of damping,  , defined as: 

 

 ln 2n

n m d

u
m

u


 




   (5.2.41) 

 

for low values of damping, normal in structural engineering, we can approximate 

this:  

 

 2m   (5.2.42) 

 

thus, 

 

  exp 2 1 2n

n m

u
e m m

u

  


     (5.2.43) 

 

and so, 

 



Structural Analysis IV  Chapter 5 – Structural Dynamics 

Dr. C. Caprani 34 

 
2

n n m

n m

u u

m u








  (5.2.44) 

 

This equation can be used to estimate damping in structures with light damping (

0.2  ) when the amplitudes of peaks m  cycles apart is known. A quick way of 

doing this, known as the Half-Amplitude Method, is to count the number of peaks it 

takes to halve the amplitude, that is 0.5
n m n

u u

 . Then, using (5.2.44) we get: 

 

 
0.11

m
   when 0.5

n m n
u u


  (5.2.45) 

 

Further, if we know the amplitudes of two successive cycles (and so 1m  ), we can 

find the amplitude after p  cycles from two instances of equation (5.2.43): 

 

 1

p

n

n p n

n

u
u u

u





 
  
 

 (5.2.46) 
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5.2.7 Response of an SDOF System Subject to Harmonic Force 

 

Figure 2.7: SDOF undamped system subjected to harmonic excitation 

 

So far we have only considered free vibration; the structure has been set vibrating by 

an initial displacement for example. We will now consider the case when a time 

varying load is applied to the system. We will confine ourselves to the case of 

harmonic or sinusoidal loading though there are obviously infinitely many forms that 

a time-varying load may take – refer to the references (Appendix) for more. 

 

To begin, we note that the forcing function  F t  has excitation amplitude of 
0

F  and 

an excitation circular frequency of   and so from the fundamental equation of 

motion (5.2.3) we have: 

 

 
0

( ) ( ) ( ) sinmu t cu t ku t F t     (5.2.47) 

 

The solution to equation (5.2.47) has two parts: 

 The complementary solution, similar to (5.2.35), which represents the transient 

response of the system which damps out by  exp t . The transient response 

may be thought of as the vibrations caused by the initial application of the load. 

 The particular solution,  p
u t , representing the steady-state harmonic response of 

the system to the applied load. This is the response we will be interested in as it 

will account for any resonance between the forcing function and the system. 

 

 m 

k 
u(t) 

c 
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The complementary solution to equation (5.2.47) is simply that of the damped free 

vibration case studied previously. The particular solution to equation (5.2.47) is 

developed in the Appendix and shown to be: 

 

    sin
p

u t t     (5.2.48) 

 

In which 

 

    
1 2

2 220 1 2
F

k
  



   
 

 (5.2.49) 

 
2

2
tan

1








 (5.2.50) 

 

where the phase angle is limited to 0     and the ratio of the applied load 

frequency to the natural undamped frequency is: 

 

 



  (5.2.51) 

 

the maximum response of the system will come at  sin 1t     and dividing 

(5.2.48) by the static deflection 
0

F k  we can get the dynamic amplification factor 

(DAF) of the system as: 

 

    
1 2

2 22DAF 1 2D  


    
 

 (5.2.52) 

 

At resonance, when  , we then have: 
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1

1

2
D





  (5.2.53) 

 

Figure 2.8 shows the effect of the frequency ratio   on the DAF. Resonance is the 

phenomenon that occurs when the forcing frequency coincides with that of the 

natural frequency, 1  . It can also be seen that for low values of damping, normal 

in structures, very high DAFs occur; for example if 0.02   then the dynamic 

amplification factor will be 25. For the case of no damping, the DAF goes to infinity 

- theoretically at least; equation (5.2.53). 

 

 

Figure 2.8: Variation of DAF with damping and frequency ratios. 
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The phase angle also helps us understand what is occurring. Plotting equation 

(5.2.50) against   for a range of damping ratios shows: 

 

 

Figure 2.9: Variation of phase angle with damping and frequency ratios. 

 

Looking at this then we can see three regions: 

 1  : the force is slowly varying and   is close to zero. This means that the 

response (i.e. displacement) is in phase with the force: for example, when the 

force acts to the right, the system displaces to the right. 

 1  : the force is rapidly varying and   is close to 180°. This means that the 

force is out of phase with the system: for example, when the force acts to the 

right, the system is displacing to the left. 

 1  : the forcing frequency is equal to the natural frequency, we have 

resonance and 90  . Thus the displacement attains its peak as the force is 

zero. 
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We can see these phenomena by plotting the response and forcing fun(5.2.54)ction 

together (though with normalized displacements for ease of interpretation), for 

different values of  . In this example we have used 0.2  . Also, the three phase 

angles are 2 0.04,  0.25, 0.46    respectively. 

 

 

Figure 2.10: Steady-state responses to illustrate phase angle. 

 

Note how the force and response are firstly “in sync” ( ~ 0 ), then “halfway out of 

sync” ( 90  ) at resonance; and finally, “fully out of sync” ( ~180 ) at high 

frequency ratio. 
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Maximum Steady-State Displacement 

The maximum steady-state displacement occurs when the DAF is a maximum. This 

occurs when the denominator of equation (5.2.52) is a minimum: 
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

   
 

 
  
  
 

 
 

   

 

 

The trivial solution to this equation of 0  corresponds to an applied forcing 

function that has zero frequency –the static loading effect of the forcing function. The 

other solution is: 

 

 21 2    (5.2.54) 

 

Which for low values of damping, 0.1   approximately, is very close to unity. The 

corresponding maximum DAF is then given by substituting (5.2.54) into equation 

(5.2.52) to get: 

 

 
max 2

1

2 1
D

 



 (5.2.55) 

 

Which reduces to equation (5.2.53) for 1  , as it should. 
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Measurement of Natural Frequencies 

It may be seen from equation (5.2.50) that when 1  , 2  ; this phase 

relationship allows the accurate measurements of the natural frequencies of 

structures. That is, we change the input frequency   in small increments until we can 

identify a peak response: the value of   at the peak response is then the natural 

frequency of the system. Example 2.1 gave the natural frequency based on this type 

of test. 
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5.2.8 Computer Implementation & Examples 

Using MS Excel 

Again we modify our previous spreadsheet and include the extra parameters related 

to forced response. We‟ve also used some of the equations from the Appendix to 

show the transient, steady-sate and total response. Normally however, we are only 

interested in the steady-state response, which the total response approaches over time. 
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Using Matlab 

First let‟s write a little function to return the DAF, since we will use it often: 

 

function D = DAF(beta,xi) 
% This function returns the DAF, D, associated with the parameters: 
% beta - the frequency ratio 
% xi - the damping ratio 

  
D = 1./sqrt((1-beta.^2).^2+(2*xi.*beta).^2); 

 

And another to return the phase angle (always in the region 0    ): 

 

function theta = phase(beta,xi) 
% This function returns the pahse angle, theta, associated with the  
% parameters: 
% beta - the frequency ratio 
% xi - the damping ratio 

  
theta = atan2((2*xi.*beta),(1-beta.^2)); % refers to complex plane 

 

With these functions, and modifying our previous damped response script, we have: 

 

function [t u] = sdof_forced(m,k,xi,u0,v0,F,Omega,duration,plotflag) 
% This function returns the displacement of a damped SDOF system with 
% parameters: 
% m - mass, kg 
% k - stiffness, N/m 
% xi - damping ratio 
% u0 - initial displacement, m 
% v0 - initial velocity, m/s 
% F - amplitude of forcing function, N 
% Omega - frequency of forcing function, rad/s 
% duration - length of time of required response 
% plotflag - 1 or 0: whether or not to plot the response 
% This function returns: 
% t - the time vector at which the response was found 
% u - the displacement vector of response 

  
Npts = 1000;    % compute the response at 1000 points 
delta_t = duration/(Npts-1); 

  
w = sqrt(k/m);          % rad/s - circular natural frequency 
wd = w*sqrt(1-xi^2);    % rad/s - damped circular frequency 

  
beta = Omega/w;         % frequency ratio 
D = DAF(beta,xi);       % dynamic amplification factor 
ro = F/k*D;             % m - amplitude of vibration 
theta = phase(beta,xi); % rad - phase angle 



Structural Analysis IV  Chapter 5 – Structural Dynamics 

Dr. C. Caprani 44 

  
% Constants for the transient response 
Aconst = u0+ro*sin(theta); 
Bconst = (v0+u0*xi*w-ro*(Omega*cos(theta)-xi*w*sin(theta)))/wd; 

  
t = 0:delta_t:duration; 
u_transient = exp(-xi*w.*t).*(Aconst*cos(wd*t)+Bconst*sin(wd*t)); 
u_steady = ro*sin(Omega*t-theta); 
u = u_transient + u_steady; 

  
if(plotflag == 1) 
    plot(t,u,'k');  
    hold on; 
    plot(t,u_transient,'k:'); 
    plot(t,u_steady,'k--'); 
    hold off; 
    xlabel('Time (s)'); 
    ylabel('Displacement (m)'); 
    legend('Total Response','Transient','Steady-State'); 
end 

 

Running this for the same problem as before with 
0

10 NF   and 15 rad/s  gives: 

 

[t u] = sdof_forced(10,100,0.1,0.025,0,20,15,6,1); 

 

 

 

As can be seen, the total response quickly approaches the steady-state response. 
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Next let‟s use our little DAF function to plot something similar to Figure 2.8, but this 

time showing the frequency ratio and maximum response from equation (5.2.54): 

 

% Script to plot DAF against Beta for different damping ratios 
xi = [0.0001,0.1,0.15,0.2,0.3,0.4,0.5,1.0]; 
beta = 0.01:0.01:3; 
for i = 1:length(xi) 
    D(i,:) = DAF(beta,xi(i)); 
end 
% A new xi vector for the maxima line 
xi = 0:0.01:1.0;    
xi(end) = 0.99999;   % very close to unity 
xi(1)   = 0.00001;   % very close to zero 
for i = 1:length(xi) 
    betamax(i) = sqrt(1-2*xi(i)^2); 
    Dmax(i) = DAF(betamax(i),xi(i)); 
end 
plot(beta,D); hold on; 
plot(betamax,Dmax,'k--'); 
xlabel('Frequency Ratio'); 
ylabel('Dynamic Amplification'); 
ylim([0 6]); % set y-axis limits since DAF at xi = 0 is enormous 
legend( 'Damping: 0%','Damping: 10%','Damping: 15%',... 
        'Damping: 20%','Damping: 30%','Damping: 40%',... 
        'Damping: 50%', 'Damping: 100%', 'Maxima'); 

 

This gives: 
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Lastly then, using the phase function we wrote, we can generate Figure 2.9: 

 

% Script to plot phase against Beta for different damping ratios 
xi = [0.0001,0.1,0.2,0.5,1.0]; 
beta = 0.01:0.01:3; 
for i = 1:length(xi) 
    T(i,:) = phase(beta,xi(i))*(180/pi); % in degrees 
end 
plot(beta,T); 
xlabel('Frequency Ratio'); 
ylabel('Phase Angle (degrees)'); 
ylim([0 180]); 
set(gca,'ytick',[0 45 90 135 180]); 
grid on; 
legend('Damping: 0%','Damping: 10%','Damping: 20%','Damping: 50%',... 
    'Damping: 100%','Location','SE'); 
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5.2.9 Numerical Integration – Newmark’s Method 

Introduction 

The loading that can be applied to a structure is infinitely variable and closed-form 

mathematical solutions can only be achieved for a small number of cases. For 

arbitrary excitation we must resort to computational methods, which aim to solve the 

basic structural dynamics equation, at the next time-step: 

 

 
1 1 1 1i i i i

mu cu ku F
   
    (5.2.56) 

 

There are three basic time-stepping approaches to the solution of the structural 

dynamics equations: 

1. Interpolation of the excitation function; 

2. Use of finite differences of velocity and acceleration; 

3. An assumed variation of acceleration. 

 

We will examine one method from the third category only. However, it is an 

important method and is extensible to non-linear systems, as well as multi degree-of-

freedom systems (MDOF). 
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Development of Newmark’s Method 

In 1959 Newmark proposed a general assumed variation of acceleration method: 

 

    1 1
1

i i i i
u u t u t u 

 
         (5.2.57) 

       
2 2

1 1
0.5

i i i i i
u u t u t u t u 

 
          
   

 (5.2.58) 

 

The parameters   and   define how the acceleration is assumed over the time step, 

t . Usual values are 
1

2
   and  

1 1

6 4
  . For example: 

 Constant (average) acceleration is given by: 
1

2
   and 

1

4
  ; 

 Linear variation of acceleration is given by: 
1

2
   and 

1

6
  . 

 

The three equations presented thus far (equations (5.2.56), (5.2.57) and (5.2.58)) are 

sufficient to solve for the three unknown responses at each time step. However to 

avoid iteration, we introduce the incremental form of the equations: 

 

 
1i i i

u u u


    (5.2.59) 

 
1i i i

u u u


    (5.2.60) 

 
1i i i

u u u


    (5.2.61) 

 
1i i i

F F F


    (5.2.62) 

 

Thus, Newmark‟s equations can now be written as: 

 

    i i i
u t u t u       (5.2.63) 
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  
 

 
2

2

2
i i i i

t
u t u u t u


        (5.2.64) 

 

Solving equation (5.2.64) for the unknown change in acceleration gives: 

 

 
   

2

1 1 1

2
i i i i

u u u u
tt  

    


 (5.2.65) 

 

Substituting this into equation (5.2.63) and solving for the unknown increment in 

velocity gives: 

 

 
 

1
2

i i i i
u u u t u

t

  

  

 
       

  
 (5.2.66) 

 

Next we use the incremental equation of motion, derived from equation (5.2.56): 

 

 
i i i i

m u c u k u F        (5.2.67) 

 

And introduce equations (5.2.65) and (5.2.66) to get: 

 

 
   

 

2

1 1 1

2

1
2

i i i

i i i i i

m u u u
tt

c u u t u k u F
t

 

  

  

 
   

  

  
           

   

 (5.2.68) 

 

Collecting terms gives: 
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   

 

2

1

1 1
1

2 2

i

i i i

m c k u
tt

F m c u m t c u
t





 

   

 
   

  

    
           

    

 (5.2.69) 

 

Let‟s introduce the following for ease of representation: 

 

 
   

2

1
k̂ m c k

tt




  


 (5.2.70) 

 
 
1 1ˆ 1

2 2
i i i i

F F m c u m t c u
t

 

   

    
            

    
 (5.2.71) 

 

Which are an effective stiffness and effective force at time i. Thus equation (5.2.69) 

becomes: 

 

 ˆ ˆ
i i

k u F    (5.2.72) 

 

Since k̂  and ˆ
i

F  are known from the system properties (m, c, k); the algorithm 

properties ( ,  , t ); and the previous time-step (
i

u , 
i

u ), we can solve equation 

(5.2.72) for the displacement increment: 

 

 
ˆ

ˆ
i

i

F
u

k


   (5.2.73) 

 

Once the displacement increment is known, we can solve for the velocity and 

acceleration increments from equations (5.2.66) and (5.2.65) respectively. And once 
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all the increments are known we can compute the properties at the current time-step 

by just adding to the values at the previous time-step, equations (5.2.59) to (5.2.61). 

 

Newmark‟s method is stable if the time-steps is about 0.1t T   of the system. 

 

The coefficients in equation (5.2.71) are constant (once t  is), so we can calculate 

these at the start as: 

 

 
 
1

A m c
t



 
 


 (5.2.74) 

 
1

1
2 2

B m t c


 

 
    

 
 (5.2.75) 

 

Making equation (5.2.71) become: 

 

 ˆ
i i i i

F F Au Bu      (5.2.76) 

 

 

 



Structural Analysis IV  Chapter 5 – Structural Dynamics 

Dr. C. Caprani 52 

Newmark’s Algorithm 

1. Select algorithm parameters,  ,   and t ; 

2. Initial calculations: 

a. Find the initial acceleration: 

 

  0 0 0 0

1
u F cu ku

m
    (5.2.77) 

 

b. Calculate the effective stiffness, k̂  from equation (5.2.70); 

c. Calculate the coefficients for equation (5.2.71) from equations (5.2.74) and 

(5.2.75). 

3. For each time step, i, calculate: 

 

 ˆ
i i i i

F F Au Bu      (5.2.78) 

 
ˆ

ˆ
i

i

F
u

k


   (5.2.79) 

 
 

1
2

i i i i
u u u t u

t

  

  

 
       

  
 (5.2.80) 

 
   

2

1 1 1

2
i i i i

u u u u
tt  

    


 (5.2.81) 

 
1i i i

u u u


    (5.2.82) 

 
1i i i

u u u


    (5.2.83) 

 
1i i i

u u u


    (5.2.84) 
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5.2.10 Computer Implementation & Examples 

Using MS Excel 

Based on our previous spreadsheet, we implement Newmark Integration. Download it 

from the course website, and see how the equations and algorithm are implemented. 

 

In the example shown, we‟ve applied a sinusoidal load of 10 N for 0.6 secs to the 

system we‟ve been using so far: 

 

 

http://www.colincaprani.com/structural-engineering/courses/structural-analysis-iv/
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Using Matlab 

There are no shortcuts to this one. We must write a completely new function that 

implements the Newmark Integration algorithm as we‟ve described it: 

 

function [u ud udd] = newmark_sdof(m, k, xi, t, F, u0, ud0, plotflag) 
% This function computes the response of a linear damped SDOF system  
% subject to an arbitrary excitation. The input parameters are: 
% m         - scalar, mass, kg 
% k         - scalar, stiffness, N/m 
% xi        - scalar, damping ratio 
% t         - vector of length N, in equal time steps, s 
% F         - vector of length N, force at each time step, N 
% u0        - scalar, initial displacement, m 
% v0        - scalar, initial velocity, m/s 
% plotflag  - 1 or 0: whether or not to plot the response 
% The output is: 
% u         - vector of length N, displacement response, m 
% ud        - vector of length N, velocity response, m/s 
% udd       - vector of length N, acceleration response, m/s2 

  
% Set the Newmark Integration parameters 
% gamma = 1/2 always 
% beta = 1/6 linear acceleration 
% beta = 1/4 average acceleration 
gamma = 1/2; 
beta = 1/6; 

  
N = length(t);  % the number of integration steps 
dt = t(2)-t(1); % the time step 
w = sqrt(k/m);  % rad/s - circular natural frequency 
c = 2*xi*k/w;   % the damping coefficient 

  
% Calulate the effective stiffness 
keff = k + (gamma/(beta*dt))*c+(1/(beta*dt^2))*m; 
% Calulate the coefficients A and B 
Acoeff = (1/(beta*dt))*m+(gamma/beta)*c; 
Bcoeff = (1/(2*beta))*m + dt*(gamma/(2*beta)-1)*c; 

  
% calulate the change in force at each time step 
dF = diff(F); 

  
% Set initial state 
u(1) = u0; 
ud(1) = ud0; 
udd(1) = (F(1)-c*ud0-k*u0)/m; % the initial acceleration 

  
for i = 1:(N-1) % N-1 since we already know solution at i = 1 
    dFeff = dF(i) + Acoeff*ud(i) + Bcoeff*udd(i); 
    dui = dFeff/keff; 
    dudi = (gamma/(beta*dt))*dui-(gamma/beta)*ud(i)+dt*(1-

gamma/(2*beta))*udd(i); 
    duddi = (1/(beta*dt^2))*dui-(1/(beta*dt))*ud(i)-(1/(2*beta))*udd(i); 
    u(i+1) = u(i) + dui; 
    ud(i+1) = ud(i) + dudi; 



Structural Analysis IV  Chapter 5 – Structural Dynamics 

Dr. C. Caprani 55 

    udd(i+1) = udd(i) + duddi; 
end 

  
if(plotflag == 1) 
    subplot(4,1,1) 
    plot(t,F,'k');  
    xlabel('Time (s)'); 
    ylabel('Force (N)'); 
    subplot(4,1,2) 
    plot(t,u,'k');  
    xlabel('Time (s)'); 
    ylabel('Displacement (m)');  
    subplot(4,1,3) 
    plot(t,ud,'k');  
    xlabel('Time (s)'); 
    ylabel('Velocity (m/s)'); 
    subplot(4,1,4) 
    plot(t,udd,'k');  
    xlabel('Time (s)'); 
    ylabel('Acceleration (m/s2)');  
end 

 

Bear in mind that most of this script is either comments or plotting commands – 

Newmark Integration is a fast and small algorithm, with a huge range of applications. 

 

In order to use this function, we must write a small script that sets the problem up and 

then calls the newmark_sdof function. The main difficulty is in generating the 

forcing function, but it is not that hard: 

 

% script that calls Newmark Integration for sample problem 
m = 10; 
k = 100; 
xi = 0.1; 
u0 = 0; 
ud0 = 0; 
t = 0:0.1:4.0;              % set the time vector 
F = zeros(1,length(t));     % empty F vector 
% set sinusoidal force of 10 over 0.6 s 
Famp = 10; 
Tend = 0.6; 
i = 1; 
while t(i) < Tend 
    F(i) = Famp*sin(pi*t(i)/Tend); 
    i = i+1; 
end 

  
[u ud udd] = newmark_sdof(m, k, xi, t, F, u0, ud0, 1); 

 

This produces the following plot: 
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Explosions are often modelled as triangular loadings. Let‟s implement this for our 

system: 

0 0.5 1 1.5 2 2.5 3 3.5 4
-5

0

5

10

Time (s)

F
o
rc

e
 (

N
)

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.1

0

0.1

Time (s)

D
is

p
la

c
e
m

e
n
t 

(m
)

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.5

0

0.5

Time (s)

V
e
lo

c
it
y
 (

m
/s

)

0 0.5 1 1.5 2 2.5 3 3.5 4
-1

0

1

Time (s)

A
c
c
e
le

ra
ti
o
n
 (

m
/s

2
)



Structural Analysis IV  Chapter 5 – Structural Dynamics 

Dr. C. Caprani 57 

 

% script that finds explosion response 
m = 10; 
k = 100; 
xi = 0.1; 
u0 = 0; 
ud0 = 0; 
Fmax = 50;      % N 
Tend = 0.2;     % s 
t = 0:0.01:2.0;             % set the time vector 
F = zeros(1,length(t));     % empty F vector 
% set reducing triangular force 
i = 1; 
while t(i) < Tend 
    F(i) = Fmax*(1-t(i)/Tend); 
    i = i+1; 
end 

  
[u ud udd] = newmark_sdof(m, k, xi, t, F, u0, ud0, 1); 

 

As can be seen from the following plot, even though the explosion only lasts for a 

brief period of time, the vibrations will take several periods to dampen out. Also 

notice that the acceleration response is the most sensitive – this is the most damaging 

to the building, as force is mass times acceleration: the structure thus undergoes 

massive forces, possibly leading to damage or failure. 
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5.2.11 Problems 

Problem 1 

A harmonic oscillation test gave the natural frequency of a water tower to be 0.41 Hz. 

Given that the mass of the tank is 150 tonnes, what deflection will result if a 50 kN 

horizontal load is applied? You may neglect the mass of the tower. 

Ans: 50.2 mm 

 

Problem 2 

A 3 m high, 8 m wide single-bay single-storey frame is rigidly jointed with a beam of 

mass 5,000 kg and columns of negligible mass and stiffness of EIc = 4.5×10
3
 kNm

2
. 

Calculate the natural frequency in lateral vibration and its period. Find the force 

required to deflect the frame 25 mm laterally. 

Ans: 4.502 Hz; 0.222 sec; 100 kN 

 

Problem 3 

An SDOF system (m = 20 kg, k = 350 N/m) is given an initial displacement of 10 mm 

and initial velocity of 100 mm/s. (a) Find the natural frequency; (b) the period of 

vibration; (c) the amplitude of vibration; and (d) the time at which the third maximum 

peak occurs. 

Ans: 0.666 Hz; 1.502 sec; 25.91 mm; 3.285 sec. 

 

Problem 4 

For the frame of Problem 2, a jack applied a load of 100 kN and then instantaneously 

released. On the first return swing a deflection of 19.44 mm was noted. The period of 

motion was measured at 0.223 sec. Assuming that the stiffness of the columns cannot 
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change, find (a) the damping ratio; (b) the coefficient of damping; (c) the undamped 

frequency and period; and (d) the amplitude after 5 cycles. 

Ans: 0.04; 11,367 kg·s/m; 4.488 Hz; 0.2228 sec; 7.11 mm. 

 

Problem 5 

From the response time-history of an SDOF system given: 
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(a) estimate the damped natural frequency; (b) use the half amplitude method to 

calculate the damping ratio; and (c) calculate the undamped natural frequency and 

period. 

Ans: 4.021 Hz; 0.05; 4.026 Hz; 0.248 sec. 

 

Problem 6 

Workers‟ movements on a platform (8 × 6 m high, m = 200 kN) are causing large 

dynamic motions. An engineer investigated and found the natural period in sway to 

be 0.9 sec. Diagonal remedial ties (E = 200 kN/mm
2
) are to be installed to reduce the 

natural period to 0.3 sec. What tie diameter is required? 

Ans: 28.1 mm. 

 

Problem 7 

The frame of examples 2.2 and 2.4 has a reciprocating machine put on it. The mass of 

this machine is 4 tonnes and is in addition to the mass of the beam. The machine 

exerts a periodic force of 8.5 kN at a frequency of 1.75 Hz. (a) What is the steady-

state amplitude of vibration if the damping ratio is 4%? (b) What would the steady-

state amplitude be if the forcing frequency was in resonance with the structure? 

Ans: 2.92 mm; 26.56 mm. 

 

Problem 8 

An air conditioning unit of mass 1,600 kg is place in the middle (point C) of an 8 m 

long simply supported beam (EI = 8×10
3
 kNm

2
) of negligible mass. The motor runs 

at 300 rpm and produces an unbalanced load of 120 kg. Assuming a damping ratio of 

5%, determine the steady-state amplitude and deflection at C. What rpm will result in 

resonance and what is the associated deflection? 

Ans: 1.41 mm; 22.34 mm; 206.7 rpm; 36.66 mm. 
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Problem 9 

Determine the response of our example system, with initial velocity of 0.05 m/s, 

when acted upon by an impulse of 0.1 s duration and magnitude 10 N at time 1.0 s. 

Do this up for a duration of 4 s. 

Ans. below 

 

 

Problem 10 

Determine the maximum responses of a water tower which is subjected to a 

sinusoidal force of amplitude 445 kN and frequency 30 rad/s over  0.3 secs. The 

tower has properties, mass 17.5 t, stiffness 17.5 MN/m and no damping. 

Ans. 120 mm, 3.8 m/s, 120.7 m/s
2
 

 

Problem 11 

Determine the maximum response of a system (m = 1.75 t, k = 1.75 MN/m,  = 10%) 

when subjected to an increasing triangular load which reaches 22.2 kN after 0.1 s. 

Ans. 14.6 mm, 0.39 m/s, 15.0 m/s
2
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5.3 Multi-Degree-of-Freedom Systems 

5.3.1 General Case (based on 2DOF) 

 

 

(a) 

 

 

 

 

(b) (c) 

Figure 3.1: (a) 2DOF system. (b) and (c) Free-body diagrams of forces 

 

Considering Figure 3.1, we can see that the forces that act on the masses are similar 

to those of the SDOF system but for the fact that the springs, dashpots, masses, forces 

and deflections may all differ in properties. Also, from the same figure, we can see 

the interaction forces between the masses will result from the relative deflection 

between the masses; the change in distance between them. 

 

For each mass, 0
x

F  , hence: 

 

    1 1 1 1 1 1 2 1 2 2 1 2 1
mu c u k u c u u k u u F        (5.3.1) 
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    2 2 2 2 1 2 2 1 2
m u c u u k u u F      (5.3.2) 

 

In which we have dropped the time function indicators and allowed u  and u  to 

absorb the directions of the interaction forces. Re-arranging we get: 

 

 
       

       

1 1 1 1 2 2 2 1 1 2 2 2 1

2 2 1 2 2 2 1 2 2 2 2

u m u c c u c u k k u k F

u m u c u c u k u k F

        

      
 (5.3.3) 

 

This can be written in matrix form: 

 

 
1 1 1 2 2 1 1 2 2 1 1

2 2 2 2 2 2 2 2 2

0

0

m u c c c u k k k u F

m u c c u k k u F

             
                         

 (5.3.4) 

 

Or another way: 

 

 Mu + Cu + Ku = F  (5.3.5) 

 

where: 

M  is the mass matrix (diagonal matrix); 

u  is the vector of the accelerations for each DOF; 

C   is the damping matrix (symmetrical matrix); 

u   is the vector of velocity for each DOF; 

K   is the stiffness matrix (symmetrical matrix); 

u   is the vector of displacements for each DOF; 

F   is the load vector. 

 

Equation (5.3.5) is quite general and reduces to many forms of analysis: 
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Free vibration:  

 

 Mu + Cu + Ku = 0  (5.3.6) 

 

Undamped free vibration: 

 

 Mu + Ku = 0  (5.3.7) 

 

Undamped forced vibration: 

 

 Mu + Ku = F  (5.3.8) 

 

Static analysis: 

 Ku = F  (5.3.9) 

 

We will restrict our attention to the case of undamped free-vibration – equation 

(5.3.7) - as the inclusion of damping requires an increase in mathematical complexity 

which would distract from our purpose. 

 

 

 



Structural Analysis IV  Chapter 5 – Structural Dynamics 

Dr. C. Caprani 66 

5.3.2 Free-Undamped Vibration of 2DOF Systems 

The solution to (5.3.7) follows the same methodology as for the SDOF case; so 

following that method (equation (2.42)), we propose a solution of the form: 

 

  sin t u = a  (5.3.10) 

 

where a  is the vector of amplitudes corresponding to each degree of freedom. From 

this we get: 

 

  2 2sin t      u = a u  (5.3.11) 

 

Then, substitution of (5.3.10) and (5.3.11) into (5.3.7) yields: 

 

    2 sin sint t      Ma + Ka = 0  (5.3.12) 

 

Since the sine term is constant for each term: 

 

 
2  K M a = 0  (5.3.13) 

 

We note that in a dynamics problem the amplitudes of each DOF will be non-zero, 

hence, a 0  in general. In addition we see that the problem is a standard eigenvalues 

problem. Hence, by Cramer‟s rule, in order for (5.3.13) to hold the determinant of 

2K M  must then be zero: 

 

 
2 0K M =  (5.3.14) 

 

For the 2DOF system, we have: 
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  2 2 2 2

2 1 1 2 2 2
0k k m k m k            K M =  (5.3.15) 

 

Expansion of (5.3.15) leads to an equation in 2  called the characteristic polynomial 

of the system. The solutions of 2  to this equation are the eigenvalues of 
2  K M

. There will be two solutions or roots of the characteristic polynomial in this case and 

an n-DOF system has n solutions to its characteristic polynomial. In our case, this 

means there are two values of 2  ( 2

1
  and 2

2
 ) that will satisfy the relationship; thus 

there are two frequencies for this system (the lowest will be called the fundamental 

frequency). For each 2

n
  substituted back into (5.3.13), we will get a certain 

amplitude vector 
n

a . This means that each frequency will have its own characteristic 

displaced shape of the degrees of freedoms called the mode shape. However, we will 

not know the absolute values of the amplitudes as it is a free-vibration problem; 

hence we express the mode shapes as a vector of relative amplitudes, 
n
φ , relative to, 

normally, the first value in 
n

a . 

 

As we will see in the following example, the implication of the above is that MDOF 

systems vibrate, not just in the fundamental mode, but also in higher harmonics. 

From our analysis of SDOF systems it‟s apparent that should any loading coincide 

with any of these harmonics, large DAF‟s will result (Section 2.d). Thus, some modes 

may be critical design cases depending on the type of harmonic loading as will be 

seen later. 
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5.3.3 Example of a 2DOF System 

The two-storey building shown (Figure 

3.2) has very stiff floor slabs relative to 

the supporting columns. Calculate the 

natural frequencies and mode shapes. 

 

3 24.5 10  kNm
c

EI    

 

Figure 3.2: Shear frame problem. 

 

 

Figure 3.3: 2DOF model of the shear frame. 

 

We will consider the free lateral vibrations of the two-storey shear frame idealised as 

in Figure 3.3. The lateral, or shear stiffness of the columns is: 

 

1 2 3

6

3

6

12
2

2 12 4.5 10

3

4 10  N/m

c
EI

k k k
h

k

 
    

 

  
 

 

 

 

The characteristic polynomial is as given in (5.3.15) so we have: 
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6 2 6 2 12

6 4 10 2 12

8 10 5000 4 10 3000 16 10 0

15 10 4.4 10 16 10 0

 

 

            

      
 

 

This is a quadratic equation in 2  and so can be solved using 615 10a   , 

104.4 10b     and 1216 10c    in the usual expression 

 

2

2 4

2

b b ac

a


  
  

 

Hence we get 2

1
425.3   and 2

2
2508  . This may be written: 

 

2
425.3

2508
n

 
  
 

ω  hence 
20.6

50.1
n

 
  
 

ω  rad/s and 
3.28

7.972

n



 
   

 

ω
f  Hz 

 

To solve for the mode shapes, we will use the appropriate form of the equation of 

motion, equation (5.3.13): 
2  K M a = 0 . First solve for the 

2   E K M  

matrix and then solve Ea = 0  for the amplitudes 
n

a . Then, form 
n
φ . 

 

In general, for a 2DOF system, we have: 

 

2

1 2 2 1 1 2 1 22

2

2 2 2 2 2 2

0

0

n

n n

n

k k k m k k m k

k k m k k m






        
              

E  

 

For 2

1
425.3  : 

 

6

1

5.8735 4
10

4 2.7241

 
   

E  
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Hence 

 

16

1 1

2

5.8735 4 0
10

4 2.7241 0

a

a

     
         

E a  

 

Taking either equation, we calculate: 

 

1 2 1 2

1 1

1 2 1 2

5.8735 4 0 0.681 1

4 2.7241 0 0.681 0.681

a a a a

a a a a 

      
   

      
φ  

 

Similarly for 2

2
2508  : 

 

6

2

4.54 4
10

4 3.524

  
    

E  

 

Hence, again taking either equation, we calculate: 

 

1 2 1 2

2 1

1 2 1 2

4.54 4 0 0.881 1

4 3.524 0 0.881 0.881

a a a a

a a a a 

        
   

       
φ  

 

The complete solution may be given by the following two matrices which are used in 

further analysis for more complicated systems. 

 

2
425.3

2508
n

 
  
 

ω  and 
1 1

1.468 1.135

 
   

Φ  

 

For our frame, we can sketch these two frequencies and associated mode shapes: 

Figure 3.4. 
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Figure 3.4: Mode shapes and frequencies of the example frame. 

 

Larger and more complex structures will have many degrees of freedom and hence 

many natural frequencies and mode shapes. There are different mode shapes for 

different forms of deformation; torsional, lateral and vertical for example. Periodic 

loads acting in these directions need to be checked against the fundamental frequency 

for the type of deformation; higher harmonics may also be important. 

 

As an example; consider a 2DOF idealisation of a cantilever which assumes stiffness 

proportional to the static deflection at 0.5L  and L  as well as half the cantilever mass 

„lumped‟ at the midpoint and one quarter of it lumped at the tip. The mode shapes are 

shown in Figure 3.5. In Section 4(a) we will see the exact mode shape for this – it is 

clear that the approximation is rough; but, with more DOFs it will approach a better 

solution.  
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Figure 3.5: Lumped mass, 2DOF idealisation of a cantilever. 

 

Mode 1

Mode 2
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5.3.4 Case Study – Aberfeldy Footbridge, Scotland 

Returning to the case study in Section 1, we will look at the results of some research 

conducted into the behaviour of this bridge which forms part of the current research 

into lateral synchronise excitation discovered on the London Millennium footbridge. 

This is taken from a paper by Dr. Paul Archbold, formerly of University College 

Dublin. 

 

Mode 
Mode 

Type 

Measured 

Frequency 

(Hz) 

Predicted 

Frequency (Hz) 

 

 

 

 

 

 

 

1 L1 0.98 1.14 +16% 

2 V1 1.52 1.63 +7% 

3 V2 1.86 1.94 +4% 

4 V3 2.49 2.62 +5% 

5 L2 2.73 3.04 +11% 

6 V4 3.01 3.11 +3% 

7 V5 3.50 3.63 +4% 

8 V6 3.91 4.00 +2% 

9 T1 3.48 4.17 20% 

10 V7 4.40 4.45 +1% 

11 V8 4.93 4.90 -1% 

12 T2 4.29 5.20 +21% 

13 L3 5.72 5.72 +0% 

14 T3 5.72 6.07 +19% 

Table 1: Modal frequencies Figure 3.6: Undeformed shape 

 

Table 1 gives the first 14 mode and associated frequencies from both direct 

measurements of the bridge and from finite-element modelling of it. The type of 
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mode is also listed; L is lateral, V is vertical and T is torsional. It can be seen that the 

predicted frequencies differ slightly from the measured; however, the modes have 

been estimated in the correct sequence and there may be some measurement error. 

 

We can see now that (from Section 1) as a person walks at about 2.8 Hz, there are a 

lot of modes that may be excited by this loading. Also note that the overall 

fundamental mode is lateral – this was the reason that this bridge has been analysed –

it is similar to the Millennium footbridge in this respect. Figure 1.7 illustrates the 

dynamic motion due to a person walking on this bridge – this is probably caused by 

the third or fourth mode. Several pertinent mode shapes are given in Figure 3.7. 
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Mode 1:  

1
st
 Lateral mode 

1.14  Hz 

 

Mode 2:  

1
st
 Vertical mode 

1.63  Hz 

 

Mode 3:  

2
nd

 Vertical mode 

1.94  Hz 

 

Mode 9:  

1
st
 Torsional mode 

4.17  Hz 

Figure 3.7: Various Modes of Aberfeldy footbridge. 
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5.4 Continuous Structures 

5.4.1 Exact Analysis for Beams 

General Equation of Motion 

 

Figure 4.1: Basic beam subjected to dynamic loading: (a) beam properties and 

coordinates; (b) resultant forces acting on the differential element. 

 

In examining Figure 4.1, as with any continuous structure, it may be seen that any 

differential element will have an associated stiffness and deflection – which changes 

with time – and hence a different acceleration. Thus, any continuous structure has an 

infinite number of degrees of freedom. Discretization into an MDOF structure is 

certainly an option and is the basis for finite-element dynamic analyses; the more 

DOF‟s used the more accurate the model (Section 3.b). For some basic structures 
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though, the exact behaviour can be explicitly calculated. We will limit ourselves to 

free-undamped vibration of beams that are thin in comparison to their length. A 

general expression can be derived and from this, several usual cases may be 

established. 

 

 

Figure 4.2: Instantaneous dynamic deflected position. 

 

Consider the element A of Figure 4.1(b); , hence: 

 

  (5.4.1) 

 

after having cancelled the common  shear term. The resultant transverse 

inertial force is (mass × acceleration; assuming constant mass): 

 

  (5.4.2) 

 

Thus we have, after dividing by the common  term: 

 

  (5.4.3) 

 

0yF 

 
 

 
,

, , 0I

V x t
p x t dx dx f x t dx

x


  



 ,V x t

 
 2

2

,
,I

v x t
f x t dx mdx

t






dx

 
 

 2

2

, ,
,

V x t v x t
p x t m

x t

 
 

 
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which, with no acceleration, is the usual static relationship between shear force and 

applied load. By taking moments about the point A on the element, and dropping 

second order and common terms, we get the usual expression: 

 

  (5.4.4) 

 

Differentiating this with respect to  and substituting into (5.4.3), in addition to the 

relationship  (which assumes that the beam is of constant stiffness): 

 

  (5.4.5) 

 

With free vibration this is: 

 

  (5.4.6) 

 

 
 ,

,
M x t

V x t
x






x

2

2
vM EI

x




   
 

4 2

4 2

, ,
,

v x t v x t
EI m p x t

x t

 
 

 

   4 2

4 2

, ,
0

v x t v x t
EI m

x t

 
 

 
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General Solution for Free-Undamped Vibration 

Examination of equation (5.4.6) yields several aspects: 

 It is separated into spatial ( ) and temporal ( ) terms and we may assume that the 

solution is also; 

 It is a fourth-order differential in ; hence we will need four spatial boundary 

conditions to solve – these will come from the support conditions at each end; 

 It is a second order differential in  and so we will need two temporal initial 

conditions to solve – initial deflection and velocity at a point for example. 

 

To begin, assume the solution is of a form of separated variables: 

 

  (5.4.7) 

 

where  will define the deformed shape of the beam and  the amplitude of 

vibration. Inserting the assumed solution into (5.4.6) and collecting terms we have: 

 

  (5.4.8) 

 

This follows as the terms each side of the equals are functions of  and  separately 

and so must be constant. Hence, each function type (spatial or temporal) is equal to 

 and so we have:  

 

  (5.4.9) 

  (5.4.10) 

 

x t

x

t

     ,v x t x Y t

 x  Y t

 

 

 

 4 2

2

4 2

1 1
constant

x Y tEI

m x x Y t t






 
   

 

x t

2

 
 

4

2

4

x
EI m x

x


 






   2 0Y t Y t 
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Equation (5.4.10) is the same as for an SDOF system (equation (2.4)) and so the 

solution must be of the same form (equation (2.17)): 

 

  (5.4.11) 

 

In order to evaluate  we will use equation (5.4.9) and we introduce: 

 

 

2

4 m

EI


   (5.4.12) 

 

And assuming a solution of the form , substitution into (5.4.9) gives: 

 

    4 4 exp 0s G sx   (5.4.13) 

 

There are then four roots for  and when each is put into (5.4.13) and added we get: 

 

          1 2 3 4
exp exp exp expx G i x G i x G x G x           (5.4.14) 

 

In which the ‟s may be complex constant numbers, but, by using Euler‟s 

expressions for cos, sin, sinh and cosh we get: 

 

          1 2 3 4
sin cos sinh coshx A x A x A x A x          (5.4.15) 

 

where the ‟s are now real constants; three of which may be evaluated through the 

boundary conditions; the fourth however is arbitrary and will depend on . 

 

  0
0 cos sin

Y
Y t Y t t 



 
   

 



  exp( )x G sx 

s

G

A


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Simply-supported Beam 

 

Figure 4.3: First three mode shapes and frequency parameters for an s-s beam. 

 

The boundary conditions consist of zero deflection and bending moment at each end: 

 

    
2

2
0, 0 and 0, 0

v
v t EI t

x


 


 (5.4.16) 

    
2

2
, 0 and , 0

v
v L t EI L t

x


 


 (5.4.17) 

 

Substituting (5.4.16) into equation (5.4.14) we find . Similarly, (5.4.17) 

gives: 

 

 
 

 

1 3

2 2

1 3

sin( ) sinh( ) 0

'' sin( ) sinh( ) 0

L A L A L

L A L A L

  

    

  

   
 (5.4.18) 

 

from which, we get two possibilities: 

2 4 0A A 
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3

1

0 2 sinh( )

0 sin( )

A L

A L








 (5.4.19) 

 

however, since  is never zero, 
3

A  must be, and so the non-trivial solution 

 must give us: 

 

 sin( ) 0L   (5.4.20) 

 

which is the frequency equation and is only satisfied when L n  . Hence, from 

(5.4.12) we get: 

 

 

2

n

n EI

L m




 
  
 

 (5.4.21) 

 

and the corresponding modes shapes are therefore: 

 

   1
sin

n

n x
x A

L




 
  

 
 (5.4.22) 

 

where 
1

A  is arbitrary and normally taken to be unity. We can see that there are an 

infinite number of frequencies and mode shapes ( n) as we would expect from 

an infinite number of DOFs. The first three mode shapes and frequencies are shown 

in Figure 4.3. 

 

sinh( )x

1 0A 
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Cantilever Beam 

This example is important as it describes the sway behaviour of tall buildings. The 

boundary conditions consist of: 

 

    0, 0 and 0, 0
v

v t t
x


 


 (5.4.23) 

    
2 3

2 3
, 0 and , 0

v v
EI L t EI L t

x x

 
 

 
 (5.4.24) 

 

Which represent zero displacement and slope at the support and zero bending 

moment and shear at the tip. Substituting (5.4.23) into equation (5.4.14) we get 

4 2
A A   and 

3 1
A A  . Similarly, (5.4.24) gives: 

 

 
 

 

2 2 2 2

1 2 3 4

3 3 3 3

1 2 3 4

'' sin( ) cos( ) sinh( ) cosh( ) 0

''' cos( ) sin( ) cosh( ) sinh( ) 0

L A L A L A L A L

L A L A L A L A L

        

        

     

     
(5.4.25) 

 

where a prime indicates a derivate of x , and so we find: 

 

 
   

   

1 2

1 2

sin( ) sinh( ) cos( ) cosh( ) 0

cos( ) cosh( ) sin( ) sinh( ) 0

A L L A L L

A L L A L L

   

   

   

    
 (5.4.26) 

 

Solving for 
1

A  and 
2

A  we find: 

 

 

 

  

 

  

2

1

2

2

cos( ) cosh( )
0

sin( ) sinh( ) sin( ) sinh( )

cos( ) cosh( )
0

sin( ) sinh( ) sin( ) sinh( )

L L
A

L L L L

L L
A

L L L L

 

   

 

   

 
 

     

 
 

     

 (5.4.27) 
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In order that neither  
1

A  and 
2

A  are zero, the expression in the brackets must be zero 

and we are left with the frequency equation: 

 

 cos( )cosh( ) 1 0L L     (5.4.28) 

 

The mode shape is got by expressing 
2

A  in terms of 
1

A : 

 

 
2 1

sin( ) sinh( )

cos( ) cosh( )

L L
A A

L L

 

 


 


 (5.4.29) 

 

and the modes shapes are therefore: 

 

  
 1

sin( ) sinh( )

sin( ) sinh( )
cosh( ) cos( )

cos( ) cosh( )

n

x x

x A L L
x x

L L

 

  
 

 

 
  
  

  

 (5.4.30) 

 

where again
1

A  is arbitrary and normally taken to be unity. We can see from (5.4.28) 

that it must be solved numerically for the corresponding values of L  The natural 

frequencies are then got from (5.4.21) with the substitution of L  for n . The first 

three mode shapes and frequencies are shown in Figure 4.4. 
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Figure 4.4: First three mode shapes and frequency parameters for a cantilever. 
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5.4.2 Approximate Analysis – Bolton’s Method 

We will now look at a simplified method that requires an understanding of dynamic 

behaviour but is very easy to implement. The idea is to represent, through various 

manipulations of mass and stiffness, any complex structure as a single SDOF system 

which is easily solved via an implementation of equation (1.2): 

 

 
1

2

E

E

K
f

M
  (5.4.31) 

 

in which we have equivalent SDOF stiffness and mass terms. 

 

Consider a mass-less cantilever which carries two different masses, Figure 4.5: 

 

 

Figure 4.5: Equivalent dynamic mass distribution for a cantilever. 

 

The end deflection of a cantilever loaded at its end by a force P  is well known to be 

3

3
PL

EI
 and hence the stiffness is 3

3EI
L

. Therefore, the frequencies of the two 

cantilevers of Figure 4.5 are: 

 

 
1 3

1

1 3

2

EI
f

M x
  (5.4.32) 

 
3

1 3
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2
E

E

EI
f

M L
  (5.4.33) 
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And so, if the two frequencies are to be equal, and considering 
1

M  as the mass of a 

small element dx  when the mass per metre is m , the corresponding part of 
E

M  is: 

 

 

3

E

x
dM mdx

L

 
  
 

 (5.4.34) 

 

and integrating: 

 

 

3

0

0.25

L

E

x
M mdx

L

mL

 
  

 



  (5.4.35) 

 

Therefore the cantilever with self-mass uniformly distributed along its length vibrates 

at the same frequency as would the mass-less cantilever loaded with a mass one 

quarter its actual mass. This answer is not quite correct but is within 5%; it ignores 

the fact that every element affects the deflection (and hence vibration) of every other 

element. The answer is reasonable for design though. 

 

 

Figure 4.6: Equivalent dynamic mass distribution for an s-s beam 

 

Similarly for a simply supported beam, we have an expression for the deflection at a 

point: 
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 

22

3
x

Px L x

EIL



  (5.4.36) 

 

and so its stiffness is: 

 

 
 

22

3
x

EIL
K

x L x



 (5.4.37) 

 

Considering Figure 4.6, we see that, from (5.4.31): 

 

 
 

2 32

1

3 48

E

EIL EI

L Mx L x M



 (5.4.38) 

 

and as the two frequencies are to be equal: 

 

 
 

2

2

4
0

16

8/15

L

E

L x
M x mdx

L

mL






  (5.4.39) 

 

which is about half of the self-mass as we might have guessed. 

 

Proceeding in a similar way we can find equivalent spring stiffnesses and masses for 

usual forms of beams as given in Table 1. Table 4.1 however, also includes a 

refinement of the equivalent masses based on the known dynamic deflected shape 

rather than the static deflected shape. 
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Table 4.1: Bolton‟s table for equivalent mass, stiffnesses and relative amplitudes. 

 

 

Figure 4.7: Effective SDOFs: (a) neglecting relative amplitude; (b) including relative 

amplitude. 

 

In considering continuous beams, the continuity over the supports requires all the 

spans to vibrate at the same frequency for each of its modes. Thus we may consider 
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summing the equivalent masses and stiffnesses for each span and this is not a bad 

approximation. It is equivalent to the SDOF model of Figure 4.7(a). But, if we 

allowed for the relative amplitude between the different spans, we would have the 

model of Figure 4.7(b) which would be more accurate – especially when there is a 

significant difference in the member stiffnesses and masses: long heavy members will 

have larger amplitudes than short stiff light members due to the amount of kinetic 

energy stored. Thus, the stiffness and mass of each span must be weighted by its 

relative amplitude before summing. Consider the following examples of the beam 

shown in Figure 4.8; the exact multipliers are known to be 10.30, 13.32, 17.72, 21.67, 

40.45, 46.10, 53.89 and 60.53 for the first eight modes. 

 

 

Figure 4.8: Continuous beam of Examples 1 to 3. 
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Example 1: Ignoring relative amplitude and refined ME 

From Table 4.1, and the previous discussion: 

 

 
3

48 3 101.9
E

EI
K

L
   ; and 

8 1
3

15 2
E

M mL
 

   
 

 , 

 

and applying (5.4.31) we have:  
4

1
10.82

2

EI
f

mL
  

 

The multiplier in the exact answer is 10.30: an error of 5%. 

 

Example 2: Including relative amplitude and refined ME 

From Table 4.1 and the previous discussion, we have: 

 

3 3 3

48 101.9
3 1 0.4108 185.9

E

EI EI EI
K

L L L
       

3 0.4928 1 0.4299 0.4108 1.655
E

M mL mL mL       

 

and applying (5.4.31) we have: 

 

  
4

1
10.60

2

EI
f

mL
  

 

The multiplier in the exact answer is 10.30: a reduced error of 2.9%. 

 

 

 



Structural Analysis IV  Chapter 5 – Structural Dynamics 

Dr. C. Caprani 92 

Example 3: Calculating the frequency of a higher mode 

 

 

Figure 4.9: Assumed mode shape for which the frequency will be found. 

 

The mode shape for calculation is shown in Figure 4.7. We can assume supports at 

the midpoints of each span as they do not displace in this mode shape. Hence we have 

seven simply supported half-spans and one cantilever half-span, so from Table 4.1 we 

have: 
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again, applying (5.4.31), we have: 

 

  
4

1
40.8

2

EI
f

mL
  

 

The multiplier in the exact answer is 40.45: and error of 0.9%. 
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Mode Shapes and Frequencies 

Section 2.d described how the DAF is very large when a force is applied at the 

natural frequency of the structure; so for any structure we can say that when it is 

vibrating at its natural frequency it has very low stiffness – and in the case of no 

damping: zero stiffness. Higher modes will have higher stiffnesses but stiffness may 

also be recognised in one form as  

 

 
1M

EI R
  (5.4.40) 

 

where R  is the radius of curvature and M  is bending moment. Therefore, smaller 

stiffnesses have a larger R  and larger stiffnesses have a smaller R . Similarly then, 

lower modes have a larger R  and higher modes have a smaller R . This enables us to 

distinguish between modes by their frequencies. Noting that a member in single 

curvature (i.e. no point of contraflexure) has a larger R  than a member in double 

curvature (1 point of contraflexure) which in turn has a larger R  than a member in 

triple curvature (2 points of contraflexure), we can distinguish modes by deflected 

shapes. Figures 4.3 and 4.4 illustrate this clearly. 
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Figure 4.10: Typical modes and reduced structures. 

 

An important fact may be deduced from Figure 4.10 and the preceding arguments: a 

continuous beam of any number of identical spans has the same fundamental 

frequency as that of one simply supported span: symmetrical frequencies are 

similarly linked. Also, for non-identical spans, symmetry may exist about a support 

and so reduced structures may be used to estimate the frequencies of the total 

structure; reductions are shown in Figure 4.10(b) and (d) for symmetrical and anti-

symmetrical modes. 

 



Structural Analysis IV  Chapter 5 – Structural Dynamics 

Dr. C. Caprani 95 

5.4.3 Problems 

Problem 1 

Calculate the first natural frequency of a simply supported bridge of mass 7 tonnes 

with a 3 tonne lorry at its quarter point. It is known that a load of 10 kN causes a 3 

mm deflection. 

Ans.: 3.95Hz. 

 

Problem 2 

Calculate the first natural frequency of a 4 m long cantilever (EI = 4,320 kNm
2
) 

which carries a mass of 500 kg at its centre and has self weight of 1200 kg. 

Ans.: 3.76 Hz. 

 

Problem 3 

What is the fundamental frequency of a 3-span continuous beam of spans 4, 8 and 5 

m with constant EI and m? What is the frequency when EI = 6×10
3
 kNm

2
 and m = 

150 kg/m? 

Ans.: 6.74 Hz. 

 

Problem 4 

Calculate the first and second natural frequencies of a two-span continuous beam; 

fixed at A and on rollers at B and C. Span AB is 8 m with flexural stiffness of 2EI and 

a mass of 1.5m. Span BC is 6 m with flexural stiffness EI and mass m per metre. 

What are the frequencies when EI = 4.5×10
3
 kNm

2
 and m = 100 kg/m? 

Ans.: 9.3 Hz; ? Hz. 
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Problem 5 

Calculate the first and second natural frequencies of a 4-span continuous beam of 

spans 4, 5, 4 and 5 m with constant EI and m? What are the frequencies when EI = 

4×10
3
 kNm

2
 and m = 120 kg/m? What are the new frequencies when support A is 

fixed? Does this make it more or less susceptible to human-induced vibration? 

Ans.: ? Hz; ? Hz. 
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5.5 Practical Design Considerations 

5.5.1 Human Response to Dynamic Excitation 

 

Figure 5.1: Equal sensation contours for vertical vibration 

 

The response of humans to vibrations is a complex phenomenon involving the 

variables of the vibrations being experienced as well as the perception of it. It has 
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been found that the frequency range between 2 and 30 Hz is particularly 

uncomfortable because of resonance with major body parts (Figure 5.2). Sensation 

contours for vertical vibrations are shown in Figure 5.1. This graph shows that for a 

given frequency, as the amplitude gets larger it becomes more uncomfortable; thus it 

is acceleration that is governing the comfort. This is important in the design of tall 

buildings which sway due to wind loading: it is the acceleration that causes 

discomfort. This may also be realised from car-travel: at constant velocity nothing is 

perceptible, but, upon rapid acceleration the motion if perceived ( F ma ). 

 

 

Figure 5.2: Human body response to vibration 

 

Response graphs like Figure 5.1 have been obtained for each direction of vibration 

but vertical motion is more uncomfortable for standing subjects; for the transverse 

and longitudinal cases, the difference has the effect of moving the illustrated bands 

up a level. Other factors are also important: the duration of exposure; waveform 

(which is again linked to acceleration); type of activity; and, psychological factors. 

An example is that low frequency exposure can result in motion sickness. 
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5.5.2 Crowd/Pedestrian Dynamic Loading 

Lightweight Floors 

 

Figure 5.3: Recommended vibration limits for light floors. 

 

Vibration limits for light floors from the 1984 Canadian Standard is shown in Figure 

5.2; the peak acceleration is got from: 

 

  0
0.9 2

I
a f

M
  (5.5.1) 

 

where I  is the impulse (the area under the force time graph) and is about 70 Ns and 

M  is the equivalent mass of the floor which is about 40% of the distributed mass. 
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This form of approach is to be complemented by a simple analysis of an equivalent 

SDOF system. Also, as seen in Section 1, by keeping the fundamental frequency 

above 5 Hz, human loading should not be problematic. 
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Crowd Loading 

This form of loading occurs in grandstands and similar structures where a large 

number of people are densely packed and will be responding to the same stimulus. 

Coordinated jumping to the beat of music, for example, can cause a DAF of about 

1.97 at about 2.5 Hz. Dancing, however, normally generates frequencies of 2 – 3 Hz. 

Once again, by keeping the natural frequency of the structure above about 5 Hz no 

undue dynamic effects should be noticed. 

 

In the transverse or longitudinal directions, allowance should also be made due to the 

crowd-sway that may accompany some events a value of about 0.3 kN per metre of 

seating parallel and 0.15 kN perpendicular to the seating is an approximate method 

for design. 

 

Staircases can be subject to considerable dynamic forces as running up or down such 

may cause peak loads of up to 4-5 times the persons bodyweight over a period of 

about 0.3 seconds – the method for lightweight floors can be applied to this scenario. 
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Footbridges 

As may be gathered from the Case Studies of the Aberfeldy Bridge, the problem is 

complex, however some rough guidelines are possible. Once again controlling the 

fundamental frequency is important; the lessons of the London Millennium and the 

Tacoma Narrows bridges need to be heeded though: dynamic effects may occur in 

any direction or mode that can be excited by any form of loading. 

 

An approximate method for checking foot bridges is the following: 

 

 
max st

u u K  (5.5.2) 

 

where 
st

u  is the static deflection under the weight of a pedestrian at the point of 

maximum deflection; K  is a configuration factor for the type of structure (given in 

Table 5.1); and   is the dynamic response factor got again from Figure 5.4. The 

maximum acceleration is then got as 2

max max
u u  (see equations (2.30) and (3.11) for 

example, note: 2 2 f  ). This is then compared to a rather simple rule that the 

maximum acceleration of footbridge decks should not exceed 0.5 f . 

 

Alternatively, BD 37/01 states: 

“For superstructures for which the fundamental natural frequency of vibration 

exceeds 5Hz for the unloaded bridge in the vertical direction and 1.5 Hz for the 

loaded bridge in the horizontal direction, the vibration serviceability requirement is 

deemed to be satisfied.” – Appendix B.1 General. 

Adhering to this clause (which is based on the discussion of Section 1‟s Case Study) 

is clearly the easiest option. 
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Also, note from Figure 5.4 the conservative nature of the damping assumed, which, 

from equation (2.35) can be seen to be so based on usual values of damping in 

structures. 

 

 

Table 5.1: Configuration factors for footbridges. 

 

 

Table 5.2: Values of the logarithmic decrement for different bridge types. 
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Figure 5.4: Dynamic response factor for footbridges 
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Design Example 

A simply-supported footbridge of 18 m span has a total mass of 12.6 tonnes and 

flexural stiffness of 3×10
5
 kNm

2
. Determine the maximum amplitude of vibration and 

vertical acceleration caused by a 0.7 kN pedestrian walking in frequency with the 

bridge: the pedestrian has a stride of 0.9 m and produces an effective pulsating force 

of 180 N. Assume the damping to be related to 0.05  . Is this a comfortable bridge 

for the pedestrian (Figure 5.1)? 

 

The natural frequency of the bridge is, from equations (2.19) and (4.21): 

 

 
8

2

3 10
3.17 Hz

2 18 12600/18
f

 
 


 

 

The static deflection is: 

 

 
3

8

700 18
0.2835 mm

48 3 10
st

u


 
 

 

 

Table 5.1 gives 1K   and Figure 5.4 gives 6.8   and so, by (5.5.2) we have: 

 

 
max

0.2835 1.0 6.8 1.93 mmu      

 

and so the maximum acceleration is: 

 

  
22 3 2

max max
2 3.17 1.93 10 0.78 m/su u         

 

We compare this to the requirement that: 
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max

2

0.5

0.5

0.78 0.89 m/s

u f

f







 

 

And so we deem the bridge acceptable. From Figure 5.1, with the amplitude 1.93 mm 

and 3.17 Hz frequency, we can see that this pedestrian will feel decidedly 

uncomfortable and will probably change pace to avoid this frequency of loading. 

 

The above discussion, in conjunction with Section 2.d reveals why, historically, 

soldiers were told to break step when crossing a slender bridge – unfortunately for 

some, it is more probable that this knowledge did not come from any detailed 

dynamic analysis; rather, bitter experience. 
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5.5.3 Damping in Structures 

The importance of damping should be obvious by this stage; a slight increase may 

significantly reduce the DAF at resonance, equation (2.47). It was alluded to in 

Section 1 that the exact nature of damping is not really understood but that it has been 

shown that our assumption of linear viscous damping applies to the majority of 

structures – a notable exception is soil-structure interaction in which alternative 

damping models must be assumed. Table 5.3 gives some typical damping values in 

practice. It is notable that the materials themselves have very low damping and thus 

most of the damping observed comes from the joints and so can it depend on: 

 The materials in contact and their surface preparation; 

 The normal force across the interface; 

 Any plastic deformation in the joint; 

 Rubbing or fretting of the joint when it is not tightened. 

 

 

Table 5.4: Recommended values of damping. 

 

When the vibrations or DAF is unacceptable it is not generally acceptable to detail 

joints that will have higher damping than otherwise normal – there are simply too 

many variables to consider. Depending on the amount of extra damping needed, one 
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could wait for the structure to be built and then measure the damping, retro-fitting 

vibration isolation devices as required. Or, if the extra damping required is 

significant, the design of a vibration isolation device may be integral to the structure.  

The devices that may be installed vary; some are: 

 Tuned mass dampers (TMDs): a relatively small mass is attached to the primary 

system and is „tuned‟ to vibrate at the same frequency but to oppose the primary 

system; 

 Sloshing dampers: A large water tank is used – the sloshing motion opposes the 

primary system motion due to inertial effects; 

 Liquid column dampers: Two columns of liquid, connected at their bases but at 

opposite sides of the primary system slosh, in a more controlled manner to oppose 

the primary system motion. 

 

These are the approaches taken in many modern buildings, particularly in Japan and 

other earthquake zones. The Citicorp building in New York (which is famous for 

other reasons also) and the John Hancock building in Boston were among the first to 

use TMDs. In the John Hancock building a concrete block of about 300 tonnes 

located on the 54
th
 storey sits on a thin film of oil. When the building sways the 

inertial effects of the block mean that it moves in the opposite direction to that of the 

sway and so opposes the motion (relying heavily on a lack of friction). This is quite a 

rudimentary system compared to modern systems which have computer controlled 

actuators that take input from accelerometers in the building and move the block an 

appropriate amount. 
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5.5.4 Design Rules of Thumb 

General 

The structure should not have any modal frequency close to the frequency of any 

form of periodic loading, irrespective of magnitude. This is based upon the large 

DAFs that may occur (Section 2.d). 

 

For normal floors of span/depth ratio less than 25 vibration is not generally a 

problem. Problematic floors are lightweight with spans of over about 7 m. 

 

Human loading 

Most forms of human loading occur at frequencies < 5 Hz (Sections 1 and 5.a) and so 

any structure of natural frequency greater than this should not be subject to undue 

dynamic excitation. 

  

Machine Loading 

By avoiding any of the frequencies that the machine operates at, vibrations may be 

minimised. The addition of either more stiffness or mass will change the frequencies 

the structure responds to. If the response is still not acceptable vibration isolation 

devices may need to be considered (Section 5.c). 

 

Approximate Frequencies 

The Bolton Method of Section 4.b is probably the best for those structures outside the 

standard cases of Section 4.a. Careful thought on reducing the size of the problem to 

an SDOF system usually enables good approximate analysis. 

 

Other methods are: 
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Structures with concentrated mass: 
1

2

g
f

 
  

 

Simplified rule for most structures: 
18

f


  

 

where   is the static deflection and g  is the acceleration under gravity. 
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Rayleigh Approximation 

A method developed by Lord Rayleigh (which is always an upper bound), based on 

energy methods, for estimating the lowest natural frequency of transverse beam 

vibration is: 

 

 

2
2

2

02
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L

d y
EI dx

dx

y dm



 
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



 (5.5.3) 

 

This method can be used to estimate the fundamental frequency of MDOF systems. 

Considering the frame of Figure 5.5, the fundamental frequency in each direction is 

given by: 

 

 2

1 2 2

i i i i
i i

i i i i
i i

Qu mu

g g
Qu mu

  
 

 
 (5.5.4) 

 

where 
i

u  is the static deflection under the dead load of the structure 
i

Q , acting in the 

direction of motion, and g  is  the acceleration due to gravity. Thus, the first mode is 

approximated in shape by the static deflection under dead load. For a building, this 

can be applied to each of the X and Y directions to obtain the estimates of the 

fundamental sway modes. 
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Figure 5.5: Rayleigh approximation for the fundamental sway frequencies of a 

building. 

 

 

Figure 5.6: Rayleigh method for approximating bridge fundamental frequencies. 

 

Likewise for a bridge, by applying the dead load in each of the vertical and horizontal 

directions, the fundamental lift and drag modes can be obtained. The torsional mode 

can also be approximated by applying the dead load at the appropriate radius of 

gyration and determining the resulting rotation angle, Figure 5.6. 
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This method is particularly useful when considering the results of a detailed analysis, 

such as finite-element. It provides a reasonable approximate check on the output. 

 



Structural Analysis IV  Chapter 5 – Structural Dynamics 

Dr. C. Caprani 114 

5.6 Appendix 

5.6.1 Past Exam Questions 

Summer 2005 

Question 5 

 

(a) The system shown in Figure Q.5(a) is known to have a static deflection of 32.7 mm for an unknown mass. 

1) Find the natural frequency of the system. 

(10%) 

2) Given that the mass is 10 kg, find the peak displacement when this mass is given an initial 

velocity of 500 mm/s and an initial displacement of 25 mm. 

(10%) 

3) What time does the first positive peak occur? 

(10%) 

4) What value of damping coefficient is required such that the amplitude after 5 oscillations is 10% 

of the first peak? 

(10%) 

5) What is the peak force in the spring? 

(20%) 

 

(b) A cantilever riverside boardwalk has been opened to the public as shown in Figure Q.5(b); however, it was 

found that the structure experiences significant human- and traffic-induced vibrations. An harmonic 

oscillation test found the natural frequency of the structure to be 2.25 Hz. It is proposed to retro-fit braced 

struts at 5m spacings so that the natural period of vibration will be 9 Hz – given E = 200 kN/mm
2
 and 

ignoring buckling effects, what area of strut is required? 

(40%) 

 

Ans. (a) 2.756 Hz; 38.2 mm; 0.05 s; 99 kg.s/m;114.5 N; (b) 67.5 mm
2
. 

  

 

FIG. Q.5(b) 
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Sample Paper Semester 1 2006/7 

 

5.  (a) The single-degree-of-freedom system shown in Fig. Q5(a) is known to have a static deflection of 32.7 

mm for an unknown mass. 

(i) Find the natural frequency of the system; 

(2 marks) 

(ii) Given that the mass is 10 kg, find the peak displacement when the mass is given an initial 

velocity of 500 mm/s and an initial displacement of 25 mm; 

(2 marks) 

(iii) At what time does the first positive peak occur? 

(2 marks) 

(iv) What damping ratio is required such that the amplitude after 5 oscillations is 10% of the first 

peak? 

(2 marks) 

(v) What is the peak force in the spring? 

(6 marks) 

 

 
 

(b) The beam shown in Fig. Q5(b) is loaded with an air conditioning (AC) unit at its tip. The AC unit 

produces an unbalanced force of 100 kg which varies sinusoidally. When the speed of the AC unit is 

varied, it is found that the maximum steady-state deflection is 20.91 mm. Determine: 

(i) The damping ratio; 

(4 marks) 

(ii) The maximum deflection when the unit‟s speed is 250 rpm; 

(7 marks) 

Take the following values: 

• EI = 1×10
6
 kNm

2
; 

• Mass of the unit is 500 kg. 

 

 

 

 

Ans. (a) 2.756 Hz; 38.2 mm; 0.05 s; 99 kg.s/m;114.5 N; (b) ??. 

  





FIG. Q5(a)

 






FIG. Q5(a)
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Semester 1 2006/7 

 

5. (a) A simply-supported reinforced concrete beam, 300 mm wide × 600 mm deep spans 8 m. Its 

fundamental natural frequency is measured to be 6.5 Hz. In your opinion, is the beam cracked or 

uncracked? 

 

Use a single degree-of-freedom (SDOF) system to represent the deflection at the centre of the beam. 

Assume that 8/15 of the total mass of the beam contributes to the SDOF model. Take the density of 

reinforced concrete to be 24 kN/m
3
 and E = 30 kN/mm

2
. 

(10 marks) 

 

(b) The beam shown in Fig. Q5(b) is loaded with an air conditioning (AC) unit at its tip. The AC unit 

produces an unbalanced force of 200 kg which varies sinusoidally. When the speed of the AC unit is 

varied, it is found that the maximum steady-state amplitude of vibration is 34.6 mm. Determine: 

 

(i) The damping ratio; 

(5 marks) 

(ii) The maximum deflection when the unit‟s speed is 100 rpm; 

(10 marks) 

 

Take the following values: 

• EI = 40×10
3
 kNm

2
; 

• Mass of the unit is 2000 kg; 

• Ignore the mass of the beam. 

 

 

 

Ans. (a) Cracked; (b) 5.1%; 41.1 mm. 

  





FIG. Q5(a)

 






FIG. Q5(b)
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Semester 1 2007/8 

 

QUESTION 5 

 

(a) For the frame shown in Fig. Q5, using a single-degree-of-freedom model, determine:  

(i) The natural frequency and period in free vibration; 

(ii) An expression for the displacement at time t if member BC is displaced 20 mm and suddenly released 

at time t = 1 sec. 

(8 marks) 

 

(b) The frame is found to have 5% damping. Using appropriate approximations, what is the percentage change in 

deflection, 4 cycles after the frame is released, of the damped behaviour compared to the undamped behaviour? 

(10 marks) 

 

(c) A machine is placed on member BC which has an unbalanced force of 500 kg which varies sinusoidally. 

Neglecting the mass of the machine, determine: 

(i) the maximum displacement when the unit‟s speed is 150 rpm; 

(ii) the speed of the machine at resonance; 

(iii) the displacement at resonance. 

(7 marks) 

 

Note: 

Take the following values: 

 EI = 20×10
3
 kNm

2
; 

 M = 20 tonnes; 

 Consider BC as infinitely rigid. 

 

 
Ans.(a) 3.93 Hz; 0.254 s; 20cos[24.72(t-1)], t>1; (b) Ratio: 28.4%, change: 71.6%; 

(c) 0.67 mm; 236 rpm; 4.01 mm. 

  





















FIG. Q5
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Semester 1 2008/9 

 

QUESTION 5 

 

The structure shown in Fig. Q5 supports a scoreboard at a sports centre. The claxton (of total mass M) which sounds 

the end of playing periods includes a motor which has an unbalanced mass of 100 kg which varies sinusoidally when 

sounded. Using a single-degree-of-freedom model for vibrations in the vertical direction, and neglecting the mass of 

the truss members, determine: 

(i) the natural frequency and period in free vibration; 

(ii) the damping, given that a test showed 5 cycles after a 10 mm initial displacement was imposed, the 

amplitude was 5.30 mm; 

(iii) the maximum displacement when the unit‟s speed is 1500 rpm; 

(iv) the speed of the machine at resonance; 

(v) the displacement at resonance. 

(25 marks) 

 

 

Note: 

Take the following values: 

 For all truss members: 320 10  kNEA   ; 

 M = 5 tonnes; 

 Ignore the stiffness and mass of member EF. 

 

 

Ans. 4.9 Hz; 0.205 s; 2%; 0.008 mm; 293.2 rpm; 5.2 mm. 

 

  

FIG. Q5




















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Semester 1 2009/10 

 

QUESTION 5 

 

(a) A 3 m high, 6 m wide single-bay single-storey frame is rigidly jointed with a beam of mass 2,000 kg and columns 

of negligible mass and stiffness of 3 22.7 10  kNmEI   . Assuming the beam to be infinitely rigid, calculate the 

natural frequency in lateral vibration and its period. Find the force required to deflect the frame 20 mm laterally. 

(10 marks) 

 

(b) A spring-mass-damper SDOF system is subject to a harmonically varying force. At resonance, the amplitude of 

vibration is found to be 10 mm, and at 0.80 of the resonant frequency, the amplitude is found to be 5.07 mm. 

Determine the damping of the system. 

(15 marks) 

 

 

Ans. 5.51 Hz, 48 kN.; 0.1. 
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Semester 1 2010/11 

 

QUESTION 5 

 

(a) For the shear frame shown in Fig. Q5(a), ignoring the mass of the columns: 

(i) How many modes will this structure have? 

(ii) Sketch the mode shapes; 

(iii) Indicate the order of the natural frequencies associated with each mode shape (i.e. lowest to highest). 

 (10 marks) 

 

(b) For the frame shown in Fig. Q5(b), using a single-degree-of-freedom model, determine the natural frequency and 

period in free vibration given that EI = 27×10
3
 kNm

2
 and M = 24 tonnes. If a machine is placed on member BC 

which has an unbalanced force of 500 kg varying sinusoidally, neglecting the mass of the machine, determine: 

(i) the maximum displacement when the unit‟s speed is 360 rpm; 

(ii) the speed of the machine at resonance; 

(iii) the displacement at resonance. 

(15 marks) 

 

 

 
Ans. 0.34 mm, 426.6 rpm, 1.02 mm. 









FIG. Q5(a)

 
















FIG. Q5(b)
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5.6.3 Amplitude Solution to Equation of Motion 

The solution to the equation of motion is found to be in the form: 

 

   cos sinu t A t B t    (5.5.5) 

 

However, we regularly wish to express it in one of the following forms: 

 

    cosu t C t    (5.5.6) 

    cosu t C t    (5.5.7) 

 

Where  

 

 
2 2C A B   (5.5.8) 

 tan
A

B
   (5.5.9) 

 tan
B

A
   (5.5.10) 

 

To arrive at this result, re-write equation (5.5.5) as: 

 

   cos sin
A B

u t C t t
C C

 
 

  
 

 (5.5.11) 

 

If we consider that A, B and C represent a right-angled triangle with angles   and  , 

then we can draw the following: 
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Thus: 

 sin cos
A

C
    (5.5.12) 

 cos sin
B

C
    (5.5.13) 

 

Introducing these into equation (5.5.11) gives two relationships: 

 

    sin cos cos sinu t C t t      (5.5.14) 

    cos cos sin sinu t C t t      (5.5.15) 

 

And using the well-known trigonometric identities: 

 

  sin sin cos cos sinX Y X Y X Y    (5.5.16) 

  cos cos cos sin sinX Y X Y X Y    (5.5.17) 

 

Gives the two possible representations, the last of which is the one we adopt: 

 

    sinu t C t    (5.5.18) 

    cosu t C t    (5.5.19) 
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5.6.4 Solutions to Differential Equations 

The Homogenous Equation 

To find the solution of: 

 

 
2

2

2
0

d y
k y

dx
   (5.5.20) 

 

we try xy e  (note that this k has nothing to do with stiffness but is the conventional 

mathematical notation for this problem). Thus we have: 

 

 
2

2

2
;x xdy d y

e e
dx dx

     

 

Substituting this into (5.5.20) gives: 

 

 2 2 0x xe k e     

 

And so we get the characteristic equation by dividing out xe : 

 

 2 2 0k    

 

From which: 

 

 
2k     

 

Or, 
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1 2

;ik ik      

 

Where 1i   . Since these are both solutions, they are both valid and the expression 

for y becomes: 

 

 
1 2

ikx ikxy Ae A e   (5.5.21) 

 

In which 
1

A  and 
2

A  are constants to be determined from the initial conditions of the 

problem. Introducing Euler‟s equations: 

 

 
cos sin

cos sin

ikx

ikx

e kx i kx

e kx i kx

 

 
 (5.5.22) 

 

into (5.5.21) gives us: 

 

    1 2
cos sin cos siny A kx i kx A kx i kx      

 

Collecting terms: 

 

    1 2 1 2
cos siny A A kx iA iA kx      

 

Since the coefficients of the trigonometric functions are constants we can just write: 

 

 cos siny A kx B kx   (5.5.23) 
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The Non-homogenous Equation 

Starting with equation (5.2.47) (repeated here for convenience): 

 

 
0

( ) ( ) ( ) sinmu t cu t ku t F t     (5.5.24) 

 

We divide by m and introduce equations (5.2.10) and (5.2.12) to get: 

 

 
2 0( ) 2 ( ) ( ) sin

F
u t u t u t t

m
      (5.5.25) 

 

At this point, recall that the solution to non-homogenous differential equations is 

made up of two parts: 

 The complimentary solution (  C
u t ): this is the solution to the corresponding 

homogenous equation, which we already have (equation (5.5.23)); 

 The particular solution (  P
u t ): particular to the function on the right hand side 

of equation (5.5.24), which we must now find. 

The final solution is the sum of the complimentary and particular solutions: 

 

      C P
u t u t u t   (5.5.26) 

 

For the particular solution we try the following: 

 

   sin cos
P

u t C t D t     (5.5.27) 

 

Then we have: 

 

   cos sin
P

u t C t D t     (5.5.28) 
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And 

 

   2 2sin cos
P

u t C t D t      (5.5.29) 

 

Substituting equations (5.5.27), (5.5.28) and (5.5.29) into equation (5.5.25) gives: 

 

  

 

2 2

2 0

sin cos

2 cos sin

sin cos sin

C t D t

C t D t

F
C t D t t

m





     

    

     

 (5.5.30) 

 

Collecting sine and cosine terms: 

 

 

 

 

2 2

2 2 0

2 sin

2 cos sin

C D t

F
C D t t

m

 

 

     

        

 (5.5.31) 

 

For this to be valid for all t, the sine and cosine terms on both sides of the equation 

must be equal. Thus: 

 

  2 2 02
F

C D
m

      (5.5.32) 

  2 22 0C D      (5.5.33) 

 

Next, divide both sides by 2 : 
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2

0

2 2
1 2

F
C D

m


  

  
   

 
 (5.5.34) 

 
2

2
2 1 0C D

 

  
   
 

 (5.5.35) 

 

Introduce the frequency ratio, equation (5.2.51),   , and 2k m  from 

equation (5.2.9) to get: 

 

  2 01 2
F

C D
k

     (5.5.36) 

  22 1 0C D     (5.5.37) 

 

From equation (5.5.37), we have: 

 

 
 21

2
C D






   (5.5.38) 

 

And using this in equation (5.5.36) gives: 

 

 
 

2
2

0
1

2
2

F
D

k






 
   
  

 (5.5.39) 

 

To get: 

 

 
   

2 22

0
1 2

2

F
D

k

 



  
  
  

 (5.5.40) 
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And rearrange to get, finally: 

 

 
   

0

2 22

2

1 2

F
D

k



 




 
 (5.5.41) 

 

Now using this with equation (5.5.38), we have: 

 

 
 

   

2

0

2 22

1 2

2 1 2

F
C

k

 

  

  
   

   

 (5.5.42) 

 

To get, finally: 

 

 
 

   

2

0

2 22

1

1 2

F
C

k



 




 
 (5.5.43) 

 

Again we use the cosine addition rule: 

 

 
2 2C D    (5.5.44) 

 tan
D

C
    (5.5.45) 

 

To express the solution as: 

 

  ( ) sin
P

u t t     (5.5.46) 

 

So we have, from equations (5.5.44), (5.5.43) and (5.5.41): 
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 

       

2 2
2

0

2 22 22 2

1 2

1 2 1 2

F

k

 


   

    
    

         

 (5.5.47) 

 

This simplifies to: 

 

 
   

   

2 22

0

2
2 22

1 2

1 2

F

k

 


 

 


  
 

 (5.5.48) 

 

And finally we have the amplitude of displacement: 

 

    
1

2 2 220 1 2
F

k
  



   
 

 (5.5.49) 

 

To obtain the phase angle, we use equation (5.5.45) with equations (5.5.43) and 

(5.5.41) again to get: 

 

 
   

 

   

0

2 22

2

0

2 22

2

1 2
tan

1

1 2

F

k

F

k



 




 



 
 



 

 (5.5.50) 

 

Immediately we see that several terms (and the minus signs) cancel to give: 

 

 
2

2
tan

1








 (5.5.51) 
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Thus we have the final particular solution of equation (5.5.46) in conjunction with 

equations (5.5.49) and (5.5.51). 

 

As referred to previously, the total solution is the sum of the particular and 

complimentary solutions, which for us now becomes: 

 

      C P
u t u t u t   (5.5.52) 

 

      cos sin sint

d d
u t e A t B t t          (5.5.53) 

 

Notice here that we used equation (5.2.35) since we have redefined the amplitude and 

phase in terms of the forcing function. To determine the unknown constants from the 

initial parameters, 
0

u  and 
0

u  we differentiate equation (5.5.53) to get: 

 

        cos sin cost

d d d d
u t e B A t A B t t                 (5.5.54) 

 

Now at 0t  , we have from equations (5.5.53) and (5.5.54): 

 

   0
0 sinu u A      (5.5.55) 

 

And: 

 

    0
0 cos

d
u u B A        (5.5.56) 

 

Solving for A first from equation (5.5.55) gives: 

 

 
0

sinA u     (5.5.57) 
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And introducing this into equation (5.5.56) gives: 

 

  0 0
sin cos

d
u B u          (5.5.58) 

 

Multiplying out and rearranging gives: 

 

  0 0
cos sin

d
u B u           (5.5.59) 

 

From which we get: 

 

 
 0 0

cos sin

d

u u
B

    



   
  (5.5.60) 

 

And now we have completely defined the time history of the problem in terms of its 

initial parameters. 

 

Remember that: 

 The complimentary solution (  C
u t ): represents the transient state of the system 

which dampens out after a period of time, as may be realized when it is seen that 

it is only the complementary response that is affected by the initial state (
0

u  and 

0
u ) of the system, in addition to the exponentially reducing term in equation 

(5.5.53); 

 The particular solution (  P
u t ): represents the steady state of the system which 

persists as long as the harmonic force is applied, as again may be seen from 

equation (5.5.53). 
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5.6.5 Important Formulae 

SDOF Systems 

Fundamental equation of motion ( ) ( ) ( ) ( )mu t cu t ku t F t    

Equation of motion for free vibration 2( ) 2 ( ) ( ) 0u t u t u t     

Relationship between frequency, circular 

frequency, period, stiffness and mass: 

Fundamental frequency for an SDOF system. 

1 1

2 2

k
f

T m



 
    

Coefficient of damping 2
c

m
   

Circular frequency 
2 k

m
   

Damping ratio 
cr

c

c
   

Critical value of damping 2 2
cr

c m km   

General solution for free-undamped vibration 

 ( ) cosu t t     

2

2 0

0
;

u
u



 
   

 

0

0

tan
u

u



  

Damped circular frequency, period and 

frequency 

21
d

     

2
;

d

d

T



  

2

d

d
f




  

General solution for free-damped vibrations 

 ( ) cost

d
u t e t     

2

2 0 0

0
;

d

u u
u






 
   

 
 

0 0

0

tan
d

u u

u







  
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Logarithmic decrement of damping ln 2n

n m d

u
m

u


 




   

Half-amplitude method 
0.11

m
   when 0.5

n m n
u u


  

Amplitude after p-cycles 1

p

n

n p n

n

u
u u

u





 
  
 

 

Equation of motion for forced response 

(sinusoidal) 
0

( ) ( ) ( ) sinmu t cu t ku t F t     

General solution for forced-damped vibration 

response and frequency ratio 

   sin
p

u t t     

   
1 2

2 220 1 2 ;
F

k
  



   
 

 

2

2
tan

1













  

Dynamic amplification factor (DAF)    
1 2

2 22DAF 1 2D  


    
 
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MDOF Systems 

Fundamental equation of 

motion 
Mu + Cu + Ku = F  

Equation of motion for 

undamped-free vibration 
Mu + Ku = 0  

General solution and derivates 

for free-undamped vibration 

 sin t u = a  

 2 2sin t      u = a u  

Frequency equation 
2  K M a = 0  

General solution for 2DOF 

system 

1 1 1 2 2 1

2 2 2 2 2

0 0

0 0

m u k k k u

m u k k u

        
                

 

Determinant of 2DOF system 

from Cramer‟s rule 
 2 2 2 2

2 1 1 2 2 2
0k k m k m k            K M =  

Composite matrix 
2   E K M  

Amplitude equation Ea = 0  
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Continuous Structures 

Equation of motion  

Assumed solution for free-

undamped vibrations 
 

General solution 
     

   

1 2

3 4

sin cos

sinh cosh

x A x A x

A x A x

  

 

 

 
 

Boundary conditions for a simply 

supported beam 

   
2

2
0, 0 and 0, 0

v
v t EI t

x


 


 

   
2

2
, 0 and , 0

v
v L t EI L t

x


 


 

Frequencies of a simply 

supported beam 

2

n

n EI

L m




 
  
 

 

Mode shape or mode n: (A1 is 

normally unity) 
  1

sin
n

n x
x A

L




 
  

 
 

Cantilever beam boundary 

conditions 

   0, 0 and 0, 0
v

v t t
x


 


 

   
2 3

2 3
, 0 and , 0

v v
EI L t EI L t

x x

 
 

 
 

Frequency equation for a 

cantilever 
cos( )cosh( ) 1 0L L     

Cantilever mode shapes  

 

1

sin( ) sinh( )

sin( ) sinh( )

cos( ) cosh( )

cosh( ) cos( )

n

x x

L L
x A

L L

x x

 

 


 

 

  
 

  
 
 

  

 

Bolton method general equation 
1

2

E

E

K
f

M
  

 

   
 

4 2

4 2

, ,
,

v x t v x t
EI m p x t

x t

 
 

 

     ,v x t x Y t
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Practical Design 

Peak acceleration under foot-loading 

 0
0.9 2

I
a f

M
  

70 NsI 
40% mass per unit areaM   

Maximum dynamic deflection max st
u u K  

Maximum vertical acceleration 2

max max
u u  

BD37/01 requirement for vertical acceleration 0.5 f  
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5.6.6 Glossary 

Structural dynamics introduces many new terms and concepts so it‟s beneficial to 

keep track of them in one place. Fill this out as you progress through the notes. 

 

Symbol Name Units 
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